Structural connectivity of the brain: differences between a normal brain and a brain with pathology

Authors

  • Carmen Ferra Mestrado em Radiações Aplicadas às Tecnologias da Saúde – Área de especialização: Ressonância Magnética. Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal. Serviço de Imagiologia, Quadrantes – Clínica Médica e de Diagnóstico. Lisboa, Portugal.
  • Hugo Alexandre Ferreira Mestrado em Radiações Aplicadas às Tecnologias da Saúde – Área de especialização: Ressonância Magnética. Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal. Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa. Lisboa, Portugal.
  • Pedro M. Gonçalves Pereira Mestrado em Radiações Aplicadas às Tecnologias da Saúde – Área de especialização: Ressonância Magnética. Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal. Serviço de Radiologia, Hospital dos Lusíadas. Lisboa, Portugal.
  • Rui Manaças Serviço de Radiologia, Hospital dos Lusíadas. Lisboa, Portugal. Serviço de Neurorradiologia, Hospital Santo António dos Capuchos, Centro Hospitalar Lisboa Central. Lisboa, Portugal.
  • Alexandre Andrade Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa. Lisboa, Portugal.

DOI:

https://doi.org/10.25758/set.1054

Keywords:

Structural network, Structural connectivity, Diffusion tensor imaging, Connectivity matrices, Post-traumatic epilepsy

Abstract

Understanding the large-scale structural network formed by neurons is a major challenge in neuroscience. In this study, we analyzed the structural connectivity of the human brain in 22 healthy subjects and in two patients with post-traumatic epilepsy. We evaluated the differences between these two groups. We also investigated differences in connectivity regarding gender and age in healthy individuals. For this purpose, we developed an analysis protocol using specialized software applications and we used graph theory metrics to characterize the structural connectivity between 118 different brain regions. Within the group of healthy subjects, we found that men in general are those with higher average values of graph theory metrics. However, there were no significant differences in gender regarding the global characterization of the brain. In addition, age was, in general, negatively correlated to the connectivity metrics. The brain regions where the most important differences were observed between healthy individuals and patients were: the Rolandic sulcus, the hippocampus, the pre-cuneus, the thalamus, and the cerebellum bilaterally. These differences were consistent with the radiologic images of patients and the studied literature on post-traumatic epilepsy. Developments are expected for the study of the structural connectivity of the human brain since its potential can be combined with other methods to characterize the disorders of brain circuits.

Downloads

Download data is not yet available.

References

Sporns O, Tononi G, Kottër R. The human connectome: a structural description of the human brain. PLoS Computat Biol. 2005;1(4):e42.

De Boer R, Schaap M, van der Lijn F, Vrooman HA, Groot M, van der Lugt A, et al. Statistical analysis of minimum cost path based structural brain connectivity. Neuroimage. 2011;55(2):557-65.

Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci. 2006;26(1):63-72.

Stam CJ, Reijneveld JC. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys. 2007;1(1):3.

Bullmore ET, Bassett DS. Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol. 2011;7:133-40.

Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186-98.

Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52(3):1059-69.

Iturria-Medina Y, Sotero RC, Canales-Rodríguez EJ, Alemán-Gómez Y, Melie-García L. Studying the human anatomical network via diffusion-weighted MRI and Graph Theory. Neuroimage. 2008;40(3):1064-76.

Rykhlevskaia E, Gratton G, Fabiani M. Combining structural and functional neuroimaging data for studying brain connectivity: a review. Psychophysiology. 2008;45(2):173-87.

Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P. Small-world networks and functional connectivity in Alzheimer's disease. Cereb Cortex. 2007;17(1):92-9.

Bernstein MA, King KF, Zhou XJ. Handbook of MRI pulse sequences. Oxford: Academic Press; 2004. ISBN 9780120928613

Desposito M. Nipype: neuroimaging in python pipelines and interfaces: using diffusion toolkit for DTI analysis. 2010. Available from: http://nipy.sourceforge.net/nipype/users/examples/dtkdtitutorial.html

Wang R, Benner T, Sorensen AG, Wedeen VJ. Diffusion toolkit: a software package for diffusion imaging data processing and tractography. Proc Int Soc Magn Reson Med. 2007;15:3720.

Wang R, Wedeen V, Martinos A. TrackVis, 2006-2010. Massachusetts General Hospital. Available from: http://trackvis.org/

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23 Suppl 1:S208-19.

Maldjian J. WFU PickAtlas: user manual. The Functional MRI Laboratory, Wake Forest University School of Medicine; 2010. Available from: http://fmri.wfubmc.edu/downloads/WFUPickAtlasUserManual.pdf

Center for Cognitive Neuroscience. UCLA multimodal connectivity package: brain mapping. CCN; 2013. Available_from:_http://ccn.ucla.edu/wiki/index.php/UCLA_Multimodal_Connectivity_Package

Sardanelli F, Di Leo G. Biostatistics for radiologists. Milan: Springer; 2009. ISBN 978-8847011328

Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol. 2004;73(1):1-60.

Published

2014-06-30

How to Cite

Structural connectivity of the brain: differences between a normal brain and a brain with pathology. (2014). Saúde & Tecnologia, T2, e29-e38. https://doi.org/10.25758/set.1054