Evaluation of inter- and intra-operator variability in a pulse wave velocity assessment device

Authors

  • Ana Costa Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Ana Silva Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Filipe Fernandes Departamento das Ciências e Tecnologias das Radiações e Biossinais da Saúde, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal. Departamento de Física, LIBPhys – UNL, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. Lisboa, Portugal.
  • Gilda Cunha Departamento das Ciências Naturais e Exatas, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Virgínia Fonseca Departamento das Ciências e Tecnologias das Radiações e Biossinais da Saúde, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • João Lobato Departamento das Ciências e Tecnologias das Radiações e Biossinais da Saúde, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Valentina Vassilenko Departamento de Física, LIBPhys – UNL, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. Lisboa, Portugal.
  • João Goyri-O'Neill Departamento de Física, LIBPhys – UNL, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa. Lisboa, Portugal. Departamento de Anatomia, Faculdade de Ciências Médicas, Universidade Nova de Lisboa. Lisboa, Portugal.

DOI:

https://doi.org/10.25758/set.1671

Keywords:

Inter-operator variability, Intra-operator variability, Pulsed wave velocity, Device validation

Abstract

Background – Pulsed wave velocity (PWV) assessment devices are valuable instruments for the determination of the cardiovascular risk of each individual. PWV is one of the existing parameters in the guidelines for the management of hypertension. It’s important to evaluate inter and intra-operator variability so the devices can increase their value. This study aims to classify inter and intra-operator variability of the PWV assessment device, Complior® SP. Methods – Observational descriptive and transversal study was performed with a sample of 38 individuals aged between 18 and 30 years old, with no cardiovascular risk factors. The data collection was performed at the Lisbon School of Health Technology. The procedure was adapted from the ARTERY society protocol for the PWV measurement device validation. To evaluate the reproducibility of the device, the mean values obtained by two operators were compared. The device precision is classified as excellent if the difference of the mean values is <0.5m/s with standard deviation (SD) ≤0.8m/s, acceptable if <1.0m/s and SD ≤1.5m/s and poor if ≥1.0m/s or SD >1.5m/s. Results – Twenty-five female and 13 male individuals took part in this study with a mean age of 22.6±2.79 years old. For operator A (p=0.863) the mean values of PWV were 6.018±0.88m/s and for operator B were 6.115±1.03m/s. The PWV mean difference values between and SD between operators was 0.137±0.15m/s (p=0,245). Conclusion – The Complior® SP has excellent reproducibility and reduced intra and inter-operator variability, being considered valid for cardiovascular risk assessment.

Downloads

Download data is not yet available.

References

Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J. 2013;34(28):2159-219.

Vlachopoulos C, Aznaouridis K, Stefanadis C. Aortic stiffness for cardiovascular risk prediction: Just measure it, just do it! J Am Coll Cardiol. 2014;63(7):647-9.

Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27(21):2588-605.

Cunha PG, Cotter J, Oliveira P, Vila I, Boutouyrie P, Laurent S, et al. Pulse wave velocity distribution in a cohort study: from arterial stiffness to early vascular aging. J Hypertens. 2015;33(7):1438-45.

Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63(7):636-46.

Reference Values for Arterial Stiffness' Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: 'establishing normal and reference values'. Eur Heart J. 2010;31(19):2338-50.

Pereira T, Maldonado J, Polónia J, Silva JA, Morais J, Marques M. Definição de valores de referência da velocidade da onda de pulso arterial numa população portuguesa: uma sub-análise do projecto EDIVA [A statistical definition of aortic pulse wave velocity normality in a Portuguese population: a subanalysis of the EDIVA project]. Rev Port Cardiol. 2011;30(9):691-8. Portuguese

Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30(3):445-8.

Rocha E. Velocidade da onda de pulso arterial: um marcador da rigidez arterial e a sua aplicabilidade na prática clínica [Pulse wave velocity: a marker of arterial stiffness and its applicability in clinical practice]. Rev Port Cardiol. 2011;30(9):699-702. Portuguese

Bossuyt J, Van de Velde S, Vermeersch S, Devos D, Heyse C, Filipovsky J, et al. Non-invasive assessment of carotid-femoral pulse wave velocity: does the measurement side matter? Artery Res. 2012;6(4):169.

Munnery KE, Gale NS, Munnery IC, Tyler C, Cockcroft JR. A comparison of aortic pulse wave velocity measured by complior and SphygmoCor in patients with COPD and healthy volunteers. Artery Res. 2013;7(3-4):125-6.

Ikonomidis I, Ntai K, Kadoglou NP, Papadakis I, Kornelakis M, Tritakis V, et al. The evaluation of pulse wave velocity using arteriograph and Complior apparatus across multiple cohorts of cardiovascular-related diseases. Int J Cardiol. 2013;168(5):4890-2.

Mahmud A, Jatoi N, Feely J. Assessment of arterial stiffness in hypertension: comparison of oscillometric (arteriograph), Piezo-Electronic (Complior), and tonometric (SphygmoCor) techniques. Artery Res. 2009;3(4):162.

Everett TR, Mahendru A, McEniery CM, Lees CC, Wilkinson IB. A comparison of SphygmoCor and Vicorder devices for measuring aortic pulse wave velocity in pregnancy. Artery Res. 2012;6(2):92-6.

Pereira T, Maldonado J. Comparative study of two generations of the Complior device for aortic pulse wave velocity measurements. Blood Press Monit. 2010;15(6):316-21.

Targett RC, Levy B, Bardou A, McIlroy MB. Simultaneous Doppler blood velocity measurements from aorta and radial artery in normal human subjects. Cardiovasc Res. 1985;19(7):394-9.

Levy B, Targett RC, Bardou A, McIlroy MB. Quantitative ascending aortic Doppler blood velocity in normal human subjects. Cardiovasc Res. 1985;19(7):383-93.

Asmar R, Benetos A, Topouchian J, Laurent P, Pannier B, Brisac AM, et al. Assessment of arterial distensibility by automatic pulse wave velocity measurement: validation and clinical application studies. Hypertension. 1995;26(3):485-90.

Asmar R, Topouchian J, Pannier B, Benetos A, Safar M. Pulse wave velocity as endpoint in large-scale intervention trial: the Complior study - Scientific, quality control, coordination and investigation committees of the Complior study. J Hypertens. 2001;19(4):813-8.

Kallem RR, Meyers KE, Sawinski DL, Townsend RR. Variation and variability in carotid-femoral pulse wave velocity. Artery Res. 2013;7(3-4):230-3.

Wilkinson IB, McEniery CM, Schillaci G, Boutouyrie P, Segers P, Donald A, et al. ARTERY Society guidelines for validation of non-invasive haemodynamic measurement devices: part 1, arterial pulse wave velocity. Artery Res. 2010;4(2):34-40.

Marques A, Revige G, Marques I, Silva A, Cunha G, Fonseca V, et al. Validação do dispositivo automático de medição da pressão arterial, OMRON® M6 Comfort, segundo o Protocolo Internacional da Sociedade Europeia de Hipertensão (2010). Saúde Tecnol. 2012;(8):47-54.

Afonso A, Nunes C. Estatística e probabilidades: aplicações e soluções em SPSS. Lisboa: Escolar Editora; 2010. ISBN 9789725922996

Pereira T, Maldonado J, Andrade I, Cardoso E, Laranjeiro M, Coutinho R, et al. Reproducibility of aortic pulse wave velocity as assessed with the new Complior analyse. Blood Press Monit. 2014;19(3):170-5.

Stea F, Bozec E, Millasseau S, Khettab H, Boutouyrie P, Laurent S. Comparison of the Complior analyse device with Sphygmocor and Complior SP for pulse wave velocity and central pressure assessment. J Hypertens. 2014;32(4):873-80.

Pizzi OL, Brandão AA, Pozzan R, Magalhães ME, Freitas EV, Brandão AP. A velocidade da onda de pulso em jovens: estudo do Rio de Janeiro [Pulse wave velocity in young adults: study of Rio de Janeiro]. Arq Bras Cardiol. 2011;97(1):53-8. Portuguese

Millasseau SC, Stewart AD, Patel SJ, Redwood SR, Chowienczyk PJ. Evaluation of carotid-femoral pulse wave velocity: Influence of timing algorithm and heart rate. Hypertension. 2005;45(2):222-6.

Published

2022-08-04

Issue

Section

Artigos

How to Cite

Evaluation of inter- and intra-operator variability in a pulse wave velocity assessment device. (2022). Saúde & Tecnologia, 17, 11-17. https://doi.org/10.25758/set.1671