MUGA processing: intra and interoperator variability impact using manual and automated methods

Authors

  • Rita Belo Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Cristiana Carvalhal Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Sérgio Figueiredo H&TRC – Centro de Investigação em Saúde e Tecnologia. ESTeSL – Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa. Lisboa, Portugal. Unidade de Ensino e Investigação em Fisiologia, Imagem Médica e Terapia, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Elisabete carol H&TRC – Centro de Investigação em Saúde e Tecnologia. ESTeSL – Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa. Lisboa, Portugal. Unidade de Ensino e Investigação em Matemática e Física, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Lina Vieira H&TRC – Centro de Investigação em Saúde e Tecnologia. ESTeSL – Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa. Lisboa, Portugal. Unidade de Ensino e Investigação em Fisiologia, Imagem Médica e Terapia, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal. CIMOSM, ISEL – Centro de Investigação em Modelação e Optimização de Sistemas Multifuncionais. Lisboa, Portugal.

DOI:

https://doi.org/10.25758/set.2225

Keywords:

Equilibrium radionuclide angiography, Cardiac function, Segmentation, Left ventricular ejection fraction, Diastolic parameters

Abstract

Introduction – Multigated acquisition (MUGA) scan is mainly used for the assessment of left ventricular ejection fraction (LVEF) in patients who undergo cardiotoxic chemotherapy drugs. When applying automatic (A) or manual (M) processing methods, some biases in the quantitative metrics can be obtained. The aim of this study is to evaluate the influence of A and M methods, specifically, the inter and intraoperative variability in accordance with the professional experience. Methods – A retrospective study was performed with 14 MUGA exams available in ESTeSL’s Xeleris™ Functional Imaging Workstation v. 1.0628 database. Three operators (OP) with no professional experience and two with more than 10 years of experience, processed every study five times for each method, using the EF Analysis™ and the Peak Filling Rate™. To perform the multiple comparisons, the Repeated Measures ANOVA, Friedman, t-test, and Wilcoxon tests were used, considering α=0.05. Results – Four of the OP presented statistically significant differences between methods in one or more parameters; similar values between experienced OP and between the non-experienced were observed when the A method was applied, and higher discrepancies were present for all parameters obtained by the M mode; higher LVEF, peak filling rate, and peak empying rate values were observed for the M method. Conclusion – Variability was found when comparing M and A processing methods, as well as interoperator variability associated with their level of experience. Despite that, there was a trend of less variability between the two experienced OP and in the A method.

Downloads

Download data is not yet available.

References

Cruz M, Duarte-Rodrigues J, Campelo M. Cardiotoxicidade na terapêutica com antraciclinas: estratégias de prevenção [Cardiotoxicity in anthracycline therapy: prevention strategies]. Rev Port Cardiol. 2016;35(6):359-71. Portuguese

Adão R, de Keulenaer G, Leite-Moreira A, Brás-Silva C. Cardiotoxicidade associada à terapêutica oncológica: mecanismos fisiopatológicos e estratégias de prevenção [Cardiotoxicity associated with cancer therapy: pathophysiology and prevention strategies]. Rev Port Cardiol. 2013;32(5):395-409. Portuguese

Hesse B, Lindhardt TB, Acampa W, Anagnostopoulos C, Ballinger J, Bax JJ, et al. EANM/ESC guidelines for radionuclide imaging of cardiac function. Eur J Nucl Med Mol Imaging. 2008;35(4):851-85.

Foley TA, Mankad SV, Anavekar NS, Bonnichsen CR, Morris MF, Miller TD, et al. Measuring left ventricular ejection fraction: techniques and potential pitfalls. Eur Cardiol. 2012;8(2):108-14.

Scheiner J, Sinusas A, Wittry MD, Royal HD, Machac J, Balon HR, et al. Society of Nuclear Medicine procedure guideline for gated equilibrium radionuclide ventriculography [Internet]. Society of Nuclear Medicine Procedure Guidelines Manual; 2002 [cited 2018 Jun]. Available from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.172.514

Mitra D, Basu S. Equilibrium radionuclide angiocardiography: its usefulness in current practice and potential future applications. World J Radiol. 2012;4(10):421-30.

Zaret B, Beller G. Clinical nuclear cardiology: state of the art and future directions. 4th ed. Mosby; 2010. ISBN 9780323085724

Sharp PF, Gemmell HG, Murray AD. Practical nuclear medicine. 3rd ed. London: Springer; 2005. ISBN 9781846280184

Wagner RH, Halama JR, Henkin RE, Dillehay GL, Sobotka PA. Errors in the determination of left ventricular functional parameters. J Nucl Med. 1989;30(11):1870-4.

D’Amore C, Gargiulo P, Paolillo S, Pellegrino AM, Formisano T, Mariniello A, et al. Nuclear imaging in detection and monitoring of cardiotoxicity. World J Radiol. 2014;6(7):486-92.

Reuvekamp EJ, Bulten BF, Nieuwenhuis AA, Meekes MR, de Haan AF, Tol J, et al. Does diastolic dysfunction precede systolic dysfunction in trastuzumab-induced cardiotoxicity? Assessment with multigated radionuclide angiography (MUGA). J Nucl Cardiol. 2016;23(4):824-32.

Boudraa AO, Zaidi H. Image segmentation techniques in nuclear medicine imaging. In: Zaidi H, editor. Quantitative analysis in nuclear medicine imaging. Boston: Springer; 2006. p. 308-57.

Faber TL, Folks RD. Computer processing methods for nuclear medicine images. J Nucl Med Technol. 1994;22(3):145-63.

Corbett JR, Akinboboye OO, Bacharach SL, Borer JS, Botvinick EH, DePuey EG, et al. ASNC imaging guidelines for nuclear cardiology procedures: equilibrium radionuclide angiocardiography. J Nucl Cardiol. 2006;13:e56-e79.

GE Medical Systems. Ejection fraction analysis operator guide. Direction 2364209-100 rev. 1. 2003. chapter 1: 1-8.

Fair JR, Heintz PH, Telepak RJ. Evaluation of new data processing algorithms for planar gated ventriculography (MUGA). J Appl Clin Med Phys. 2009;10(3):173-9.

Puchal-Añé R, Guirao-Marín S, Domènech-Vilardell A, Rodríguez-Gasén A, Bajén-Lázaro M, Ricart-Brulles Y, et al. Calculation of the left ventricular ejection fraction: comparison between 4 different instruments. Rev Esp Med Nuclear. 2008;27(6):418-23.

Yang SN, Sun SS, Zhang G, Chou KT, Lo SW, Chiou YR, et al. Left ventricular ejection fraction estimation using mutual information on technetium-99m multiple-gated SPECT scans. Biomed Eng Online. 2015;14:119.

GE Medical Systems. Peak filling rate operator guide. Direction 2364209-100 rev. 1. 2003. chapter 2: 1-34.

Carboni GP. Depressed exercise peak ejection rate detected on ambulatory radionuclide monitoring reflects end-stage cardiac inotropic reserve and predicts mortality in ischaemic cardiomyopathy. Cardiol Res. 2012;3(4):164-71.

Hamilton DI, Diagnostic nuclear medicine: a physics perspective. Springer; 2004. ISBN 9783662065884

Movahed A, Gnanasegaran G, Buscombe J, Hall M. Integrating cardiology for nuclear medicine physicians. Springer; 2009. ISBN 9783540786740

Akincioglu C, Berman DS, Nishina H, Kavanagh PB, Slomka PJ, Abidov A, et al. Assessment of diastolic function using 16-frame 99mTc-sestamibi gated myocardial perfusion SPECT: normal values. J Nucl Med. 2005;46(7):1102-8.

Steyn R, Boniaszczuk J, Geldenhuys T. Comparison of estimates of left ventricular ejection fraction obtained from gated blood pool imaging, different software packages and cameras. Cardiovasc J Afr. 2014;25(2):44-9.

Hains AD, Al-Khawaja I, Hinge DA, Lahiri A, Raftery EB. Radionuclide left ventricular ejection fraction: a comparison of three methods. Br Heart J. 1987;57(3):242-6.

Bresser P, de Beer J, de Wet Y. A study investigating variability of left ventricular ejection fraction using manual and automatic processing modes in a single setting. Radiography. 2015;21(1):e41-4.

Boudraa AE, Arzi M, Sau J, Champier J, Hadj-Moussa S, Besson JE, et al. Automated detection of the left ventricular region in gated nuclear cardiac imaging. IEEE Trans Biomed Eng. 1996;43(4):430-7.

International Atomic Energy Agency. Quantitative nuclear medicine imaging: concepts, requirements and methods. Vienna: IAEA; 2014. ISBN 9789201415103

Wackers FJ. Equilibrium gated radionuclide angiocardiography: its invention, rise, and decline and… comeback? J Nucl Cardiol. 2016;23(3):362-5.

Chen YC, Ko CL, Yen RF, Lo MF, Huang YH, Hsu PY, et al. Comparison of biventricular ejection fractions using cadmium-zinc-telluride SPECT and planar equilibrium radionuclide angiography. J Nucl Cardiol. 2016;23(3):348-61.

Published

2022-07-28

Issue

Section

Artigos

How to Cite

MUGA processing: intra and interoperator variability impact using manual and automated methods. (2022). Saúde & Tecnologia, 22, 22-27. https://doi.org/10.25758/set.2225