Contributo da Inteligência Artificial para classificação de imagem em estudos de perfusão do miocárdio: uma revisão sistemática

Autores

  • Mariana Cardoso Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Vanessa Santos Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Sérgio Figueiredo H&TRC – Health & Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.

DOI:

https://doi.org/10.25758/set.790

Palavras-chave:

Inteligência Artificial, Deep learning, Convolutional neural networks, PET, SPECT, Medicina nuclear, Classificação, Doença arterial coronária, Perfusão do miocárdio

Resumo

Introdução Os métodos de Inteligência Artificial (IA) como o deep learning (DL) e, em particular, as convolutional neural networks (CNN) caracterizam-se por executar tarefas que normalmente requerem cognição humana. Nos estudos de perfusão do miocárdio, os sistemas de IA têm assumido importância como ferramenta auxiliar aos especialistas de medicina nuclear, particularmente para classificação de imagem no âmbito da doença arterial coronária (DAC). Objetivos Avaliar o contributo dos métodos de DL para classificação de imagem em estudos de perfusão do miocárdio. Métodos Realizou-se uma revisão sistemática, onde foram incluídos 11 artigos, pesquisados nas bases de dados PubMed, Web of Science e Scopus. Incluíram-se estudos publicados nos últimos cinco anos, que procuram avaliar o desempenho dos métodos de DL para classificação de imagem em estudos de perfusão do miocárdio em contexto de DAC. Resultados Dos 11 artigos incluídos, 82% utilizaram CNN e os restantes 18% aplicaram outros métodos de DL. A arquitetura Red-Green-Blue Convolutional Neural Network (RGB-CNN) demonstrou maior aplicabilidade, correspondendo a 45% das CNN utilizadas e apresentou melhor desempenho (AUC=94,58%). As restantes arquiteturas utilizadas corresponderam a 11% cada (CNN 2D; Inception V3; ResNet152V2; CNN Hand-Crafted e ResNet50). Conclusão Os métodos de IA, nomeadamente o DL com recurso a CNN, demonstram ser benéficos para a classificação de imagens de perfusão do miocárdio, com potencial de aplicação no diagnóstico precoce de DAC, embora com necessidade de investigação futura.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Corrigendum to: 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(44):4242.

Papandrianos N, Papageorgiou E. Automatic diagnosis of coronary artery disease in SPECT myocardial perfusion imaging employing deep learning. Appl Sci. 2021;11(14):6362.

Lin A, Kolossváry M, Motwani M, Išgum I, Maurovich-Horvat P, Slomka PJ, et al. Artificial Intelligence in cardiovascular imaging for risk stratification in coronary artery disease. Radiol Cardiothorac Imaging. 2021;3(1):e200512.

Hyafil F, Gimelli A, Slart RH, Georgoulias P, Rischpler C, Lubberink M, et al. EANM procedural guidelines for myocardial perfusion scintigraphy using cardiac-centered gamma cameras. Eur J Hybrid Imaging. 2019;3(1):11.

Berkaya SK, Sivrikoz IA, Gunal S. Classification models for SPECT myocardial perfusion imaging. Comput Biol Med. 2020;123:103893.

Ora M, Gambhir S. Myocardial perfusion imaging: a brief review of nuclear and nonnuclear techniques and comparative evaluation of recent advances. Indian J Nucl Med. 2019;34(4):263-70.

Xu Z, Tang H, Malhotra S, Dong M, Zhao C, Ye Z, et al. Three-dimensional fusion of myocardial perfusion SPECT and invasive coronary angiography guides coronary revascularization. J Nucl Cardiol. 2022;29(6):3267-77.

Germano G, Berman DS. Clinical gated cardiac SPECT. 2nd ed. Wiley-Blackwell; 2006. ISBN 9780470987520

Papandrianos NI, Apostolopoulos ID, Feleki A, Apostolopoulos DJ, Papageorgiou EI. Deep learning exploration for SPECT MPI polar map images classification in coronary artery disease. Ann Nucl Med. 2022;36(9):823-33.

Fernandes J, Ferreira MJ, Leite L. Quantificação do fluxo sanguíneo miocárdico por tomografia por emissão de positrões: atualização [Update on myocardial blood flow quantification by positron emission tomography]. Rev Port Cardiol. 2020;39(1):37-46. Portuguese

Teuho J, Schultz J, Klén R, Knuuti J, Saraste A, Ono N, et al. Classification of ischemia from myocardial polar maps in 15O–H2O cardiac perfusion imaging using a convolutional neural network. Sci Rep. 2022;12(1):2839.

Papandrianos NI, Feleki A, Moustakidis S, Papageorgiou EI, Apostolopoulos ID, Apostolopoulos DJ. An explainable classification method of SPECT myocardial perfusion images in nuclear cardiology using deep learning and Grad-CAM. Appl Sci. 2022;12(15):7592.

Apostolopoulos ID, Papandrianos NI, Feleki A, Moustakidis S, Papageorgiou EI. Deep learning-enhanced nuclear medicine SPECT imaging applied to cardiac studies. EJNMMI Phys. 2023;10(1):6.

Ko CL, Lin SS, Huang CW, Chang YH, Ko KY, Cheng MF, et al. Polar map-free 3D deep learning algorithm to predict obstructive coronary artery disease with myocardial perfusion CZT-SPECT. Eur J Nucl Med Mol Imaging. 2023;50(2):376-86.

Cheng Z, Wen J, Huang G, Yan J. Applications of artificial intelligence in nuclear medicine image generation. Quant Imaging Med Surg. 2021;11(6):2792-822.

Hai PN, Thanh NC, Trung NT, Kien TT. Transfer learning for disease diagnosis from myocardial perfusion SPECT imaging. Comput Mater Contin. 2022;73(3):5925-41.

Yeung MW, Benjamins JW, Knol RJ, van der Zant FM, Asselbergs FW, van der Harst P, et al. Multi-task deep learning of myocardial blood flow and cardiovascular risk traits from PET myocardial perfusion imaging. J Nucl Cardiol. 2022;29(6):3300-10.

Apostolopoulos ID, Apostolopoulos DI, Spyridonidis TI, Papathanasiou ND, Panayiotakis GS. Multi-input deep learning approach for cardiovascular disease diagnosis using myocardial perfusion imaging and clinical data. Phys Med. 2021;84:168-77.

Papandrianos NI, Feleki A, Papageorgiou EI, Martini C. Deep learning-based automated diagnosis for coronary artery disease using SPECT-MPI images. J Clin Med. 2022;11(13):3918.

Singh A, Miller RJ, Otaki Y, Kavanagh P, Hauser MT, Tzolos E, et al. Direct risk assessment from myocardial perfusion imaging using explainable deep learning. JACC Cardiovasc Imaging. 2023;16(2):209-20.

Liu H, Wu J, Miller EJ, Liu C, Liu Y, Liu YH. Diagnostic accuracy of stress-only myocardial perfusion SPECT improved by deep learning. Eur J Nucl Med Mol Imaging. 2021;48(9):2793-800.

Zhang R, Wang P, Bian Y, Fan Y, Li J, Liu X, et al. Establishment and validation of an AI-aid method in the diagnosis of myocardial perfusion imaging. BMC Med Imaging. 2023;23(1):84.

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

National Institute for Health and Care Research. PROSPERO – International prospective register of systematic reviews [homepage]. NIHR; s.d. [cited 2023 Jul 3]. Available from: https://www.crd.york.ac.uk/PROSPERO/

Campbell JM, Klugar M, Ding S, Carmody DP, Hakonsen SJ, Jadotte YT, et al. Chapter 9: diagnostic test accuracy systematic reviews [homepage]. In: Aromataris E, Munn Z, editors. JBI: manual for evidence synthesis. Adelaide: JBI; 2020. p. 309-59. Available from: https://www.med.muni.cz/en/research-and-development/research-and-development/publishing/publikace-lf-mu/1754781

Driessen RS, Raijmakers PG, Stuijfzand WJ, Knaapen P. Myocardial perfusion imaging with PET. Int J Cardiovasc Imaging. 2017;33(7):1021-31.

Miller RJ, Kuronuma K, Singh A, Otaki Y, Hayes S, Chareonthaitawee P, et al. Explainable deep learning improves physician interpretation of myocardial perfusion imaging. J Nucl Med. 2022;63(11):1768-74.

Otaki Y, Singh A, Kavanagh P, Miller RJ, Parekh T, Tamarappoo BK, et al. Clinical deployment of explainable Artificial Intelligence of SPECT for diagnosis of coronary artery disease. JACC Cardiovasc Imaging. 2022;15(6):1091-102.

Lin Q, Man Z, Cao Y, Deng T, Han C, Cao C, et al. Classifying functional nuclear images with convolutional neural networks: a survey. IET Image Process. 2020;14(14):3300-13.

Papandrianos NI, Feleki A, Moustakidis S, Papageorgiou EI. A convolutional neural network-based explainable classification method of SPECT myocardial perfusion images in nuclear cardiology. In: 13th International Conference on Information, Intelligence, Systems & Applications (IISA), Corfu (Greece), July 18-20, 2022.

Yamashita R, Nishio M, Do RK, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9(4):611-29.

Popescu C, Laudicella R, Baldari S, Alongi P, Burger I, Comelli A, et al. PET-based artificial intelligence applications in cardiac nuclear medicine. Swiss Med Wkly. 2022;152:w30123.

Juarez-Orozco LE, Martínez-Manzanera O, van der Zant FM, Knol RJ, Knuuti J. Deep learning in quantitative PET myocardial perfusion imaging. JACC Cardiovasc Imaging. 2020;13(1 Pt 1):180-2.

Decuyper M, Maebe J, Van Holen R, Vandenberghe S. Artificial intelligence with deep learning in nuclear medicine and radiology. EJNMMI Phys. 2021;8(1):81.

Downloads

Publicado

30-12-2024

Edição

Secção

Artigos de Revisão

Como Citar

Contributo da Inteligência Artificial para classificação de imagem em estudos de perfusão do miocárdio: uma revisão sistemática. (2024). Saúde & Tecnologia, 30, e790. https://doi.org/10.25758/set.790