A era dos medicamentos de ARN interferência: o panorama clínico dos fármacos para silenciamento génico

Autores

  • Bruno M. D. C. Godinho RNA Therapeutics Institute, University of Massachusetts Medical School. Worcester, USA.
  • Anastasia Khvorova Lisbon School of Health Technology, Polytechnic Institute of Lisbon. Lisbon, Portugal.

DOI:

https://doi.org/10.25758/set.2227

Palavras-chave:

ARN interferência, siRNA, miRNA, Oligonucleotídios para terapêutica, Desenvolvimento de novos fármacos

Resumo

Oligonucleotídeos sintéticos, como os small interfering RNAs (siRNAs), providenciam uma forma simples e eficiente de modular a expressão de qualquer gene. siRNAs utilizam um mecanismo endógeno, chamado ARN interferência, para degradar ARN mensageiros que estejam associados a condições patológicas. A capacidade de silenciar genes com elevada especificidade e potência faz dos siRNAs fármacos ideais com um elevado potencial para transformar o ramo da medicina e a forma como se faz desenvolvimento farmacêutico. Contudo, os primeiros ensaios clínicos com esta tecnologia não tiveram sucesso imediato, o que reduziu temporariamente o entusiasmo da comunidade científica. A maioria destes estudos iniciais não atingiram a eficácia clínica desejada. A introdução prematura de fármacos que não se encontravam devidamente estabilizados e a utilização de estratégias de administração inadequadas foram as principais causas dos primeiros fracassos. Avanços recentes na síntese química de oligonucleotídeos, como a melhor compreensão dos processos biológicos que definem a farmacocinética/farmacodinâmica destes fármacos, resultou numa mudança drástica no panorama clínico desta nova modalidade terapêutica. O número de ensaios clínicos tem aumentado significativamente ao longo dos últimos anos, em paralelo com o aumento da eficácia terapêutica destes medicamentos. Em 2018 foi testemunhado um marco importante para o ramo de desenvolvimento destes fármacos, com a aprovação do primeiro produto baseado em liposomas, Patisiran (OnpattroTM), pela Food and Drug Administration e pela European Medicines Agency. Aproximadamente um ano mais tarde foi aprovado o primeiro fármaco que utiliza a estratégia de conjugados que possibilita a internalização específica em hepatócitos, Givosiran (GIVLAARITM). A recente aprovação destes dois fármacos trouxe uma esperança renovada ao ramo de ARN interferência, alimentando o interesse nesta estratégia como poderosa ferramenta terapêutica para doenças do foro genético. Este artigo de revisão pretende providenciar uma perspetiva geral sobre o panorama clínico dos fármacos para silenciamento génico, contextualizando o papel dos avanços tecnológicos que permitiram a definição desta modalidade como uma nova classe farmacêutica.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell. 1990;2(4):279-89.

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806-11.

Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001;20(23):6877-88.

Wood H. FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nat Rev Neurol. 2018;14(10):570.

Corey DR. RNA learns from antisense. Nat Chem Biol. 2007;3:8.

Haussecker D. The business of RNAi therapeutics in 2012. Mol Ther Nucleic Acids. 2012;1(2):e8.

Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol. 2017;35(3):238-48.

Plasterk RH. RNA silencing: the genome's immune system. Science. 2002;296(5571):1263-5.

Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature. 2004;431(7006):343-9.

Huang W. MicroRNAs: biomarkers, diagnostics, and therapeutics. In: Huang J, Borchert GM, Dou D, Huan J, Lan W, Tan M, et al., editors. Bioinformatics in MicroRNA research. New York: Springer; 2017. p. 57-67. ISBN 9781493970469

Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346-58.

Couto LB, High KA. Viral vector-mediated RNA interference. Curr Opin Pharmacol. 2010;10(5):534-42.

Marshall E. Gene therapy death prompts review of adenovirus vector. Science. 1999;286(5448):2244-5.

Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med. 2018;20(5):e3015.

Borel F, Kay MA, Mueller C. Recombinant AAV as a platform for translating the therapeutic potential of RNA interference. Mol Ther. 2014;22(4):692-701.

Boudreau RL, Spengler RM, Hylock RH, Kusenda BJ, Davis HA, Eichmann DA, et al. siSPOTR: a tool for designing highly specific and potent siRNAs for human and mouse. Nucleic Acids Res. 2012;41(1):e9.

Naito Y, Ui-Tei K. siRNA design software for a target gene-specific RNA interference. Front Genet. 2012;3(102).

Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol. 2004;22(3):326-30.

Birmingham A, Anderson E, Sullivan K, Reynolds A, Boese Q, Leake D, et al. A protocol for designing siRNAs with high functionality and specificity. Nat Protoc. 2007;2(9):2068-78.

Godinho BM, Coles AH, Khvorova A. Conjugate-mediated delivery of RNAi-based therapeutics: enhancing pharmacokinetics-pharmacodynamics relationships of medicinal oligonucleotides. In: Agrawal S, Gait MJ, editors. Advances in nucleic acid therapeutics. Royal Society of Chemistry; 2019. p. 206-32. ISBN 9781788015714

Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature. 2008;452(7187):591-7.

Robbins M, Judge A, Liang L, McClintock K, Yaworski E, MacLachlan I. 2′-O-methyl-modified RNAs Act as TLR7 Antagonists. Mol Ther. 2007;15(9):1663-9.

Sledz CA, Holko M, de Veer MJ, Silverman RH, Williams BRG. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol. 2003;5(9):834-9.

Schlee M, Hornung V, Hartmann G. siRNA and isRNA: two edges of one sword. Mol Ther. 2006;14(4):463-70.

Watts JK, Deleavey GF, Damha MJ. Chemically modified siRNA: tools and applications. Drug Discov Today. 2008;13(19-20):842-55.

Haraszti RA, Roux L, Coles AH, Turanov AA, Alterman JF, Echeverria D, et al. 5΄-Vinylphosphonate improves tissue accumulation and efficacy of conjugated siRNAs in vivo. Nucleic Acids Res. 2017;45(13):7581-92.

Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541-55.

Guzman-Villanueva D, El-Sherbiny IM, Herrera-Ruiz D, Vlassov AV, Smyth HD. Formulation approaches to short interfering RNA and MicroRNA: challenges and implications. J Pharm Sci. 2012;101(11):4046-66.

Osborn MF, Coles AH, Biscans A, Haraszti RA, Roux L, Davis S, et al. Hydrophobicity drives the systemic distribution of lipid-conjugated siRNAs via lipid transport pathways. Nucleic Acids Res. 2018;47(3):1070-81.

Zimmermann TS, Karsten V, Chan A, Chiesa J, Boyce M, Bettencourt BR, et al. Clinical proof of concept for a novel hepatocyte-targeting GalNAc-siRNA conjugate. Mol Ther. 2017;25(1):71-8.

Springer AD, Dowdy SF. GalNAc-siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucleic Acid Ther. 2018;28(3):109-18.

Garba AO, Mousa SA. Bevasiranib for the treatment of wet, age-related macular degeneration. Ophthalmol Eye Dis. 2010;2:75-83.

Kaiser PK, Symons RA, Shah SM, Quinlan EJ, Tabandeh H, Do DV, et al. RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027. Am J Ophthalmol. 2010;150(1):33-9. e2.

Peddi V, Ratner L, Cooper M, Gaber O, Feng S, Tso P, et al. Treatment with QPI-1002, a short interfering (SI) RNA for the prophylaxis of delayed graft function: abstract# 2967. Transplantation. 2014;98:153.

Koldehoff M, Steckel NK, Beelen DW, Elmaagacli AH. Therapeutic application of small interfering RNA directed against bcr-abl transcripts to a patient with imatinib-resistant chronic myeloid leukaemia. Clin Exp Med. 2007;7(2):47-55.

Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature. 2010;464(7291):1067-70.

Rozema DB, Lewis DL, Wakefield DH, Wong SC, Klein JJ, Roesch PL, et al. Dynamic polyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Nat Acad Sci. 2007;104(32):12982-7.

Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203-22.

Schluep T, Lickliter J, Hamilton J, Lewis DL, Lai CL, Lau JY, et al. Safety, tolerability, and pharmacokinetics of ARC‐520 injection, an RNA interference‐based therapeutic for the treatment of chronic hepatitis B virus infection, in healthy volunteers. Clin Pharmacol Drug Dev. 2017;6(4):350-62.

Turner AM, Stolk J, Bals R, Lickliter JD, Hamilton J, Christianson DR, et al. Hepatic-targeted RNA interference provides robust and persistent knockdown of alpha-1 antitrypsin levels in ZZ patients. J Hepatol. 2018;69(2):378-84.

Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang C-C, Ueda M, Kristen AV, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):11-21.

Pavco P, Libertine L, Young V, Woolery-Lloyd H, Cauwenbergh G. RXI-109 treatment to reduce the formation of keloids following keloidectomy. J Am Acad Dermatol. 2015;72(5 Suppl 1):AB273.

Mullard A. RNAi hits another rut. Nat Rev Drug Discov. 2016;15(11):738.

Ray KK, Landmesser U, Leiter LA, Kallend D, Dufour R, Karakas M, et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med. 2017;376(15):1430-40.

Huang Y. Preclinical and clinical advances of GalNAc-decorated nucleic acid therapeutics. Mol Ther Nucleic Acids. 2017;6:116-32.

Ando Y, Coelho T, Berk JL, Cruz MW, Ericzon B-G, Ikeda S-i, et al. Guideline of transthyretin-related hereditary amyloidosis for clinicians. Orphanet J Rare Dis. 2013;8:31.

Suhr OB, Coelho T, Buades J, Pouget J, Conceicao I, Berk J, et al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet J Rare Dis. 2015;10:109.

Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):22-31.

Sardh E, Harper P, Balwani M, Stein P, Rees D, Bissell DM, et al. Phase 1 Trial of an RNA interference therapy for acute intermittent porphyria. N Engl J Med. 2019;380(6):549-58.

Brandão PR, Titze-de-Almeida SS, Titze-de-Almeida R. Leading RNA interference therapeutics part 2: silencing delta-aminolevulinic acid synthase 1, with a focus on Givosiran. Mol Diagn Ther. 2019 December 2. [Online ahead of print].

Downloads

Publicado

29-07-2022

Edição

Secção

Artigos de Revisão

Como Citar

A era dos medicamentos de ARN interferência: o panorama clínico dos fármacos para silenciamento génico. (2022). Saúde & Tecnologia, 21, 05-17. https://doi.org/10.25758/set.2227