microRNAs modulation by Carica papaya extracts in the K562 human cell line

Authors

  • Edna Departamento das Ciências do Diagnóstico, Terapêutica e Saúde Pública, Escola Superior de Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal | H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Beatriz Canteiro H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Catarina Ginete H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Mário Gomes H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal | Departamento das Ciências Exatas, da Vida, Sociais e Humanas, Escola Superior de Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Miguel Brito H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal | Departamento das Ciências Exatas, da Vida, Sociais e Humanas, Escola Superior de Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Anita Gomes H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal | Departamento das Ciências Exatas, da Vida, Sociais e Humanas, Escola Superior de Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Carina Silva H&TRC – Health & Technology Research Center, ESTeSL – Escola Superior de Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal | Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa. Lisboa, Portugal.

DOI:

https://doi.org/10.25758/set.959

Keywords:

β-hemoglobinopathies, Carica papaya, miRNAs, Fetal hemoglobin

Abstract

Introduction – Hemoglobinopathies constitute one of the most prevalent groups of monogenic diseases worldwide. Currently, one of the available treatments consists of the pharmacological induction of fetal hemoglobin (HbF) using various chemical compounds, the most common one being hydroxyurea (HU). However, its high cost in developing countries and its poor safety profile limit its use. Therefore, it is essential to discover new HbF-inducing compounds with fewer side effects and that are easily accessible, such as natural compounds (e.g., Carica papaya L. leaf extract). Objective – To evaluate the effect of K562 cells’ (an immortalized human myeloid leukemia cell line) exposure to methanolic extracts of Carica papaya L. leaves (EMFCP) on the expression of miRNAs involved in HbF regulation. Methods – K562 cells were exposed for 24 hours to EMFCP (0.5, 50, and 100μg/mL) and HU (25μg/mL). The expression of miRNAs involved in HbF regulation (miR-486-3p, miR-34a-5p, miR-210-5p, miR-32-5p, and miR-96-5p) was analyzed by RT-qPCR, using miR-426-3p as an endogenous reference. Results – Data analysis demonstrated that EMFCP modulates miRNA expression levels, as confirmed by the observation of decreased expression levels of miR-486-3p, miR-34a-5p, miR-210-5p, miR-32-5p, and miR-96-5p, which are HbF regulators. Conclusion – This study suggests that EMFCP has the potential to induce HbF expression through the modulation of regulatory miRNAs, thus constituting a potentially effective approach in the treatment of β-hemoglobinopathies.

Downloads

Download data is not yet available.

References

Verma HK, Lakkakula S, Lakkakula BV. Retrospection of the effect of hydroxyurea treatment in patients with sickle cell disease. Acta Haematol Pol. 2018;49(1):1-8.

Gameiro MS. Caraterização molecular e funcional de variantes alfa de hemoglobina identificadas no Centro Hospitalar e Universitário de Coimbra [dissertation]. Coimbra: Faculdade de Ciências e Tecnologia da Universidade de Coimbra; 2012. Available from: https://hdl.handle.net/10316/25415

Starlard-Davenport A, Fitzgerald A, Pace BS. Exploring epigenetic and microRNA approaches for γ-globin gene regulation. Exp Biol Med. 2021;246(22):2347-57.

Tanhehco YC. Gene therapy for hemoglobinopathies. Transfus Apher Sci. 2021;60(1):103061.

Paikari A, Sheehan VA. Fetal haemoglobin induction in sickle cell disease. Br J Haematol. 2018;180(2):189-200.

Elendu C, Amaechi DC, Alakwe-Ojimba CE, Elendu TC, Elendu RC, Ayabazu CP, et al. Understanding sickle cell disease: causes, symptoms, and treatment options. Medicine (Baltimore). 2023;102(38):e35237.

Kukreja A, Wadhwa N, Tiwari A. Therapeutic role of natural agents in beta-thalassemia: a review. J Pharm Res. 2013;6(9):954-9.

Vuong QV, Hirun S, Roach PD, Bowyer MC, Phillips PA, Scarlett CJ. Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. J Herb Med. 2013;3(3):104-11.

Nugroho A, Heryani H, Choi JS, Park HJ. Identification and quantification of flavonoids in Carica papaya leaf and peroxynitrite-scavenging activity. Asian Pac J Trop Biomed. 2017;7(3):208-13.

Vij T, Prashar Y. A review on medicinal properties of Carica papaya Linn. Asian Pac J Trop Dis. 2015;5(1):1-6.

Wilber A, Nienhuis AW, Persons DA. Transcriptional regulation of fetal to adult hemoglobin switching: new therapeutic opportunities. Blood. 2011;117(15):3945-53.

Tayebi B, Abrishami F, Alizadeh S, Minayi N, Mohammadian M, Soleimani M, et al. Modulation of microRNAs expression in hematopoietic stem cells treated with sodium butyrate in inducing fetal hemoglobin expression. Artif Cells Nanomed Biotechnol. 2017;45(1):146-56.

Saki N, Abroun S, Soleimani M, Kavianpour M, Shahjahani M, Mohammadi-Asl J, et al. MicroRNA expression in β-thalassemia and sickle cell disease: a role in the induction of fetal hemoglobin. Cell J. 2016;17(4):583-92.

Bianchi N, Zuccato C, Finotti A, Lampronti I, Borgatti M, Gambari R. Involvement of miRNA in erythroid differentiation. Epigenomics. 2012;4(1):51-65.

Ribeiro E, Delgadinho M, Matos E, Santos R, Sousa D, Galante H, et al. Epigenetic and transcriptional modulator potential of epigallocatechin-3-gallate and genistein on fetal hemoglobin reactivators genes. Clin Complement Med Pharmacol. 2022;2(2):100034.

Li J, Lai Y, Shi L. BCL11A down-regulation induces γ-globin in human β-thalassemia major erythroid cells. Hemoglobin. 2018;42(4):225-30.

Cyrus C. The role of miRNAs as therapeutic tools in sickle cell disease. Medicina (Kaunas). 2021;57(10):1106.

Lulli V, Romania P, Morsilli O, Cianciulli P, Gabbianelli M, Testa U, et al. MicroRNA-486-3p regulates γ-globin expression in human erythroid cells by directly modulating BCL11A. PLoS One. 2013;8(4):e60436.

Penglong T, Saensuwanna A, Kocharoenwat J, Boorintaragot W, Fupongsiriphan S, Srinoun K. MiR-144 regulates hemoglobin expression in human erythroid cell line. Walailak J Sci Technol. 2020;17(11):1221-9.

Zhang L, Liao Y, Tang L. MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res. 2019;38(1):53.

Ward CM, Li B, Pace BS. Original research: stable expression of miR-34a mediates fetal hemoglobin induction in K562 cells. Exp Biol Med. 2016;241(7):719-29.

Sun KT, Huang YN, Palanisamy K, Chang SS, Wang IK, Wu KH, et al. Reciprocal regulation of γ-globin expression by exo-miRNAs: relevance to γ-globin silencing in β-thalassemia major. Sci Rep. 2017;7(1):202.

Kargutkar N, Sawant-Mulay M, Hariharan P, Chandrakala S, Nadkarni A. Role of microRNA in hydroxyurea mediated HbF induction in sickle cell anaemia patients. Sci Rep. 2023;13(1):369.

Yuan P, Tang C, Chen B, Lei P, Song J, Xin G, et al. miR‑32‑5p suppresses the proliferation and migration of pancreatic adenocarcinoma cells by targeting TLDC1. Mol Med Rep. 2021;24(5):752.

MicroRNA-Target Interactions. miRTarBase [Internet]. Available from: https://ngdc.cncb.ac.cn/databasecommons/database/id/167

TargetScanHuman. Human | miR-96-5p/1271-5p [homepage]. Whitehead Institute for Biomedical Research; 2021 Sep. Available from: https://www.targetscan.org/cgi-bin/targetscan/vert_80/targetscan.cgi?species=Human&gid=&mir_sc=&mir_c=&mir_nc=&mir_vnc=&mirg=miR-96-5p

Eltaweel NH, ElKamah GY, Khairat R, Atia HA, Amr KS. Epigenetic effects toward new insights as potential therapeutic target in B-thalassemia. J Genet Eng Biotechnol. 2021;19(1):51.

Chou YC, Chen RL, Lai ZS, Song JS, Chao YS, Shen CK. Pharmacological induction of human fetal globin gene in hydroxyurea-resistant primary adult erythroid cells. Mol Cell Biol. 2015;35(14):2541-53.

Jha N, Mangukia N, Gadhavi H, Patel M, Bhavsar M, Rawal R, et al. Small RNA sequencing and identification of papaya (Carica papaya L.) miRNAs with potential cross-kingdom human gene targets. Mol Genet Genomics. 2022;297(4):981-97.

De Montalembert M, Voskaridou E, Oevermann L, Cannas G, Habibi A, Loko G, et al. Real-life experience with hydroxyurea in patients with sickle cell disease: results from the prospective ESCORT-HU cohort study. Am J Hematol. 2021;96(10):1223-31.

Sharma A, Sharma R, Sharma M, Kumar M, Barbhai MD, Lorenzo JM, et al. Carica papaya L. leaves: deciphering its antioxidant bioactives, biological activities, innovative products, and safety aspects. Oxid Med Cell Longev. 2022;2022:2451733.

Published

2025-12-30

Issue

Section

Artigos

How to Cite

microRNAs modulation by Carica papaya extracts in the K562 human cell line. (2025). Saúde & Tecnologia, e959. https://doi.org/10.25758/set.959