Immune response in infection by Leishmania infantum based on animal model

Authors

  • Élia Cabrita Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Lenea Campino Unidade de Leishmanioses, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa. Lisboa, Portugal.
  • Carla Maia Centro de Malária e outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa. Lisboa, Portugal.

DOI:

https://doi.org/10.25758/set.324

Keywords:

Leishmania infantum, Immune response, Animal mode, Nitric oxide, Lymphocyte proliferation, Real-time PCR

Abstract

Leishmaniases are diseases caused by protozoa of the genus Leishmania that are phagocytic cells-obligated intracellular parasites. The aim of this study was to characterize the infection by Leishmania infantum on intradermally inoculated BALB/c mice, analyzing the evolution of parasitism and the immune responses developed. Parasite load was determined by real-time PCR. Since day 7 post-infection, parasites were detected and visceral dissemination was observed 56 days post-infection. Lymphocytes from the animals of the infected group proliferated in response to antigenic stimulation, while peritoneal macrophages produced nitric oxide in the presence of Leishmania antigen. These results demonstrated that BALB/c mice intradermally inoculated are a good experimental model of visceral leishmaniasis.

Downloads

Download data is not yet available.

References

Lainson R, Shaw J. Evolution, classification and geographical distribution. In Peters W, Killick Kendrick R (Eds.). The Leishmaniasis in biology and medicine. Vol. 1. London: Academic Press; 1987. p. 1-20.

Killick-Kendrick R. Phlebotomine vectors of the leishmaniases: a review. Med Vet Entomol. 1990;4(1):1-24.

Killick-Kendrick R, Rioux J. Mark release recapture of sand flies fed on leishmanial dogs: the natural life cycle of Leishmania infantum in Phlebotomus ariasi. Parassitologia. 2002;44(1-2):67-71.

Aransay AM, Ready PD, Morillas-Marquez F. Population differentiation of Phlebotomus perniciosus in Spain following postglacial dispersal. Heredity. 2003;90(4):316-25.

Deane LM, Deane MP. Leishmaniose visceral urbana (no cão e no homem) em sobral, Ceará. Hospital. 1955;47:75-87.

Dye C. The logic of visceral leishmaniasis control. Am J Trop Med Hyg. 1996;55(2):125-30.

World Health Organization. Leishmaniasis. Geneva: WHO; 2008 [cited 2008 Sep]. Available from: http://www.who.int/leishmaniasis/en/.

Rolão N, Melo C, Campino L. Influence of the inoculation route in BALB/c mice infected by Leishmania infantum. Acta Trop. 2004;90(1):123-6.

Melby PC, Tryon W, Chandrasekar B, Freeman GL. Cloning of Syrian hamster (Mesocricetus auratus) cytokine cDNAs and analysis of cytokine mRNA expression in experimental visceral leishmaniasis. Infect Immun. 1998;66(5):2135-42.

Miralles GD, Stoeckle MY, McDermott DF, Finkelman FD, Murray HW. Th1 and Th2 cell-associated cytokines in experimental visceral leishmaniasis. Infect Immun. 1994;62(3):1058-63.

Leclercq V, Lebastard M, Belkaid Y, Louis J, Milon G. The outcome of the parasitic process initiated by Leishmania infantum in laboratory mice: a tissue-dependent pattern controlled by the Lsh and MHC loci. J Immunol. 1996;157(10):4537-45.

Proudfoot L, O’Donnell CA, Liew FY. Glycoinositolphospholipids of Leishmania major inhibit nitric oxid synthesis and reduce leishmanicidal activity in murine macrophages. Eur J Immunol. 1995;25(3):745-50.

Rolão N, Cortes S, Gomes-Pereira S, Campino L. Leishmania infantum: mixed T-helper-1/ T-helper-2 immune response in experimentally infected BALB/c mice. Exp Parasitol. 2007;115(3):270-6.

Reed SG, Scott P. T-cell and cytokine responses in leishmaniasis. Curr Opin Immunol. 1993;5(4):524-31.

Proudfoot L, O’Donnell CA, Liew FY. Glycoinositolphospholipids of Leishmania major inhibit nitric oxid synthesis and reduce leishmanicidal activity in murine macrophages. Eur J Immunol. 1995;25(3):745-50.

Bogdan C, Röllinghoff M, Solbach W. Evasion strategies of Leishmania parasites. Parasitol Today. 1990;6(6):183-7.

Reiner NE. Parasite-accessory cell interactions in murine leishmaniasis. I. Evasion and stimulus-dependent suppression of the macrophage interleukin 1 response by Leishmania donovani. J Immunol. 1987;138(6):1919-25.

Olivier M, Gregory DJ, Forget G. Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev. 2005;18(2):293-305.

Gregory DJ, Olivier M. Subversion of host cell signalling by the protozoan parasite Leishmania. Parasitology. 2005;130 Suppl:S27-35.

Courret N, Prina E, Mougneau E, Saraiva EM, Sacks DL, Glaichenhaus N, et al. Presentation of the Leishmania antigen LACK by infected macrophages is dependent upon the virulence of the phagocytosed parasites. Eur J Immunol. 1999;29(3):762-73.

Leandro C, Santos-Gomes GM, Campino L, Romão P, Cortes S, Tolão N, et al. Cell mediated immunity and specific IgG1 and IgG2 antibody response in natural and experimental canine leishmaniosis. Vet Immunol Immunopathol. 2001;79(3-4):273-84.

Riça-Capela MJ, Cortes S, Leandro C, Peleteiro MC, Santos-Gomes GM, Campino L. Immunological and histopathological studies in a rodent model infected with Leishmania infantum promastigotes or amastigotes. Parasitol Res. 2003;89(3):163-9.

Howard MK, Sayers G, Miles MA. Leishmania donovani metacyclic promastigotes: transformation in vitro, lectin agglutination, complement resistance and infectivity. Exp Parasitol. 1987;64(2):147-56.

Rolão N, Cortes S, Rodrigues OR, Campino L. Quantification of Leishmania infantum parasites in tissue biopsies by real-time polymerase chain reaction and polymerase chain reaction – enzyme-linked immunosorbent assay. J Parasitol. 2004;90(5):1150-4.

Ding AH, Nathan CF, Stuehr DJ. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages: comparison of activating cytokines and evidence for independent production. J Immunol. 1988;141(7):2407-12.

Maluish AE, Strong DM. Lymphocyte proliferation. In Rose NR, Friedman H, Fahey JL, editors. Manual of clinical laboratory immunology. 3rd ed. Washington, DC: American Society for Microbiology; 1986. p. 274-81.

Maia C. Interacção parasita-hospedeiro e susceptibilidade de Leishmania infantum a fármacos [dissertation]. Lisboa: Universidade Nova de Lisboa; 2003.

Hommel M, Jaffe CL, Travi B, Milon G. Experimental models for leishmaniasis and for testing anti leishmanial vaccines. Ann Trop Med Parasitol. 1995;89 Suppl 1:55-73.

Olivier M, Proulx C, Tanner CE. Importance of lymphokines in the control of multiplication and dispersion of Leishmania donovani within liver macrophages of resistant and susceptible mice. J Parasitol. 1989;75(5):720-7.

Murray HW, Granger AM, Mohanty SK. Response to chemotherapy in experimental visceral leishmaniasis: T-cell dependent but Interferon-γ- and Interleukin-2-independent. J Infect Dis. 1991;163(3):622-4.

Wilson ME, Young BM, Davidson BL, Mente KA, McGowan SE. The importance of TGF-beta in murine visceral leishmaniasis. J Immunol. 1998;161(11):6148-55.

Wilson ME, Recker TJ, Rodriguez NE, Young BM, Burnell KK, Streit JA, et al. The TGF-beta response to Leishmania chagasi in the absence of IL-12. Eur J Immunol. 2002;32(12):3556-65.

Paranhos-Silva M, Oliveira GG, Reis EA, de Menezes RM, Fernandes O, Sherlock I, et al. A follow-up of Beagle dogs intradermally infected with Leishmania chagasi in the presence or absence of sand fly saliva. Vet Parasitol. 2003;114(2):97-111.

De Moura TR, Oliveira F, Novais FO, Miranda JC, Clarêncio J, Follador I, et al. Enhanced Leishmania braziliensis infection following pre exposure to Sandfly Saliva. PLoS Negl Trop Dis. 2007;1(2):e84.

Goto H, Lindoso JA. Immunity and immunosuppression in experimental visceral leishmaniasis. Braz J Med Biol Res. 2004;37(4):615-23.

Stanley AC, Engwerda CR. Balancing immunity and pathology in visceral leishmaniasis. Immunol Cell Biol. 2007;85(2):138-47.

Garin YJ, Sulahian A, Pratlong F, Meneceur P, Gangneux JP, Prina E, et al. Virulence of Leishmania infantum is expressed as a clonal and dominant phenotype in experimental infections. Infect Immun. 2001;69(12):7365-73.

Gomes-Pereira S, Rodrigues OR, Rolão N, Almeida PD, Santos-Gomes GM. Hepatic cellular immune responses in mice with "cure" and "non-cure" phenotype to Leishmania infantum infection: importance of CD8+ T cells and TGF-beta production. FEMS Immunol Med Microbiol. 2004;41(1):59-68.

Rodrigues OR, Moura RA, Gomes-Pereira S, Santos-Gomes GM. H-2 complex influences cytokine gene expression in Leishmania infantum-infected macrophages. Cell Immunol. 2006;243(2):118-26.

Ahmed S, Colmenares M, Soong L, Goldsmith-Pestana K, Munstermann L, Molina R, et al. Intradermal infection model for pathogenesis and vaccine studies of murine visceral leishmaniasis. Infect Immun. 2003;71(1):401-10.

Santos-Gomes GM, Campino L, Abranches P. Canine experimental infection: intradermal inoculation of Leishmania infantum promastigotes. Mem Inst Oswaldo Cruz. 2000;95(2):193-8.

Moll H. Epidermal Langerhans cells are critical for immunoregulation of cutaneous leishmaniasis. Immunol Today. 1993;14(8):383-7.

Published

2011-05-15

Issue

Section

Artigos

How to Cite

Immune response in infection by Leishmania infantum based on animal model. (2011). Saúde & Tecnologia, 05, 17-22. https://doi.org/10.25758/set.324