Occupational exposure to formaldehyde: exposure and genotoxic effects assessment

Authors

  • Carina Ladeira Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal. Centro de Investigação e Estudos em Saúde Pública (CIESP), Escola Nacional de Saúde Pública, Universidade Nova de Lisboa. Lisboa, Portugal.
  • Susana Viegas Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal. Centro de Investigação e Estudos em Saúde Pública (CIESP), Escola Nacional de Saúde Pública, Universidade Nova de Lisboa. Lisboa, Portugal.
  • Elisabete Carolino Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Mário Gomes Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • João Prista Centro de Investigação e Estudos em Saúde Pública (CIESP), Escola Nacional de Saúde Pública, Universidade Nova de Lisboa. Lisboa, Portugal. Escola Nacional de Saúde Pública, Universidade Nova de Lisboa. Lisboa, Portugal.
  • Manuel Carmo Gomes Faculdade de Ciências, Universidade de Lisboa. Lisboa, Portugal.
  • Miguel Brito Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.

DOI:

https://doi.org/10.25758/set.454

Keywords:

Genotoxicity, Micronucleus, Occupational exposure, Formaldehyde

Abstract

Since 2004, formaldehyde (FA) has been classified by the International Agency for Cancer Research as a carcinogen. The FA ranks 25th in the overall United States chemical production, with more than 5 million tons produced each year. Due to its economic importance and varied use, many individuals are exposed to FA in their occupational settings. This study aimed to assess the exposure to FA in two occupational settings – FA production factory and pathology anatomy (PA) laboratories – and relate it to possible health effects by comparing the frequency of micronuclei (MN) in peripheral blood lymphocytes and exfoliates cells from the oral mucosa of workers exposed to FA with individuals not exposed to this agent (controls). This study was performed on 80 workers occupationally exposed to FA: 30 workers in the FA factory and 50 workers in 10 PA laboratories. The control group comprised 85 subjects without exposure. We have applied two different methodologies for the environmental monitoring of FA. The results were compared with the reference to the exposure weighted average (TLV-TWA = 0.75 ppm) and ceiling concentration (VLE-MC = 0.3 ppm). All laboratories had results higher than the reference value to CM (1.41 ppm). None of the results obtained for the TWA exposure (0.16 ppm) were higher than the reference value. Macroscopic examination obtained the highest values of CM in 90% of laboratories. MN values were higher in individuals exposed to FA as compared to controls. As for MN in lymphocytes, the average was 3.96 in the exposed compared with 0.81 in the unexposed. The MN in exfoliated cells of the buccal mucosa had an average of 0.96 in exposed, compared with 0.16 in controls. The results of this biomonitoring can be particularly useful to organizations responsible for defining acceptable levels of human exposure to FA.

Downloads

Download data is not yet available.

References

Portier CJ, Bell DA. Genetic susceptibility: significance in risk assessment. Toxicol Lett. 1998;102-103:185-9.

Manno M, Viau C, Cocker J, Colosio C, Lowry L, Mutti A, et al. Biomonitoring for occupational health risk assessment (BOHRA). Toxicol Lett. 2010;192(1):3-16.

Ishikawa H, Tian Y, Yamauchi T. Influence of gender, age and lifestyle factor son micronuclei frequency in healthy Japanese populations. J Occup Health. 2003;45(3):179-81.

Battershill JM, Burnett K, Bull S. Factors affecting the incidence of genotoxicity biomarkers in peripheral blood lymphocytes: impact on design of biomonitoring studies. Mutagenesis. 2008;23(6):423-37.

Herber RF, Duffus JH, Christensen JM, Olsen E, Mark MV. Risk assessment for occupational exposure to chemicals: a review of current methodology. Pure Appl Chem. 2001;73(6):993-1031.

U. S. Environmental Protection Agency. Guidelines for exposure assessment. Washington, DC: US EPA; 1992. ISBN 989-8076-02-1.

Stewart P, Stenzel M. Exposure assessment in the occupational setting. Appl Occup Environ Hyg. 2000;15(5):435-44.

Ritter L, Solomon K, Sibley P, Hall K, Keen P, Mattu G, et al. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry. J Toxicol Environ Health A. 2002;65(1):1-142.

Smith T. Studying peak exposure: toxicology and exposure statistics. In: Marklund S, editor. Exposure assessment in epidemiology and practice. Stockholm: National Institute for Working Life; 2001. p. 207-9.

Preller L, Burstyn I, De Pater N, Kromhout H. Characteristics of peaks of inhalation exposure to organic solvents. Ann Occup Hyg. 2004;48(7):643-52.

Checkoway H, Rice CH. Time-weighted averages, peaks, and other indices of exposure in occupational epidemiology. Am J Ind Med. 1992; 21(1):25-33.

National Toxicology Program. Formaldehyde (Gas) – CAS no. 50-00-0: substance profile, report on carcinogens [Internet]. 11th ed. Washington, DC: National Institutes of Health; 2005. Available from: http://ntp.niehs.nih.gov/ntp/roc/eleventh/profiles/s089form.pdf

Nazaroff WW. Indoor air chemistry: cleaning agents, ozone and toxic air contaminants. Berkeley, CA: California Air Resources Board, California Environmental Protection Agency; 2006.

International Agency for Research on Cancer. Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol. Lyon: IARC; 2006. ISBN 92-832-1288-6.

Goyer N, Beaudry C, Bégin D, Bouchard M, Buissonnet S, Carrier G, et al. Impacts d’un abaissement de la valeur d’exposition admissible au formaldéhyde: industries de fabrication de formaldéhyde et de résines à base de formaldéhyde. Montréal: Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail; 2004.

Zhang L, Steinmaus C, Eastmond DA, Xin XK, Smith MT. Formaldehyde exposure and leukaemia: a new meta-analysis and potential mechanisms. Mutat Res. 2009;681(2-3):150-68.

Baan R, Grosse Y, Straif K, Secretan B, El Ghissassi F, Bouvard V, et al. A review of human carcinogens – Part F: chemical agents and related occupations. Lancet Oncol. 2009;10(12):1143-4.

Hauptmann M, Stewart PA, Lubin JH, Freeman LE, Hornung RW, Herrick RF, et al. Mortality from lymphohematopoietic malignancies and brain cancer among embalmers exposed to formaldehyde. J Natl Cancer Inst. 2009;101(24):1696-708.

NIOSH. Applications manual for the revised NIOSH lifting equation. Cincinnati, OH: National Institute for Occupational Safety and Health; 1994.

Langhorst ML. Photoionization detector sensitivity of organic compounds. J Cromatogr Sci. 1981;19(2): 98-103.

Instituto Português da Qualidade. NP 1796:2007 – Segurança e saúde do trabalho: valores limite de exposição profissional a agentes químicos existentes no ar dos locais de trabalho. Caparica: IPQ; 2007.

Brown RH. The sampling of gases and vapours: principles and methods. In Gardiner K, Harrington JM, editors. Occupational hygiene. 3rd ed. Massachussetts: Blackwell Publishing; 2005. p. 208-21.

Fenech M. Cytokinesis-block micronucleus cytome assay. Nat Protoc. 2007;2:1084-104.

Nersesyan A, Kundi M, Atefie K, Schulte-Hermann R, Knasmüller S. Effect of staining procedures on the results of micronucleus assays with exfoliated oral mucosa cells. Cancer Epidemiol Biomarkers Prev. 2006;15(10):1835-40.

Fenech M, Holland N, Chang W, Zeiger E, Bonassi S. The HUman MicroNucleus Project: An international collaborative study on the use of micronucleus technique for measuring DNA damage in humans. Mutat Res. 1999;428(1-2):271-83.

Tolbert PE, Shy CM, Allen JW. Micronuclei and other nuclear abnormalities in buccal smears: a field test in snuff users. Am J Epidemiol. 1991;134(8):840-50.

Shaham J, Bomstein Y, Gurvich R, Rashkovsky M, Kaufman Z. DNA–protein crosslinks and p53 protein expression in relation to occupational exposure to formaldehyde. Occup Environ Med. 2003;60(6):403-9.

Orsière T, Sari-Minodier I, Iarmarcovai G, Botta A. Genotoxic risk assessment of pathology and anatomy laboratory workers exposed to formaldehyde by use of personal air sampling and analysis of DNA damage in peripheral lymphocytes. Mutat Res. 2006;605(1-2):30-41.

Pyatt D, Natelson E, Golden R. Is inhalation exposure to formaldehyde a biological plausible cause of lymphohematopoietic malignancies? Regul Toxicol Pharmacol. 2008;51(1):119-33.

Hauptmann M, Lubin JH, Stewart PA, Hayes RB, Blair A. Mortality from solid cancers among workers in formaldehyde industries. Am J Epidemiol. 2004;159(12):1117-30.

Pinkerton LE, Hein MJ, Stayner LT. Mortality among a cohort of garment workers exposed to formaldehyde: an update. Occup Environ Med. 2004;61(3):193-200.

Dreyfuss JH. Occupational formaldehyde exposure linked to increased risk of myeloid leukemia and death. CA Cancer J Clin. 2010;60(3):135-6.

Ryan TJ, Burroughs GE, Taylor K, Kovein, RJ. Video exposure assessments demonstrate excessive laboratory formaldehyde exposures. Appl Occup Environ Hyg. 2003;18(6):450-7.

Rosén G, Andersson IM, Walsh PT, Clark RD, Säämänen A, Heinonen K, et al. A review of video exposure monitoring as an occupational hygiene tool. Ann Occup Hyg. 2005;49(3):201-17.

Mcglothlin JD. Occupational exposure assessment and control using video exposure monitoring in the pharmaceutical industry. In International Scientific Conference (IOHA 2005), 6, 19-23 September 2005, Pilanesberg National Park North West Province, South Africa. Pilanesberg: IOHA – International Occupational Hygiene Association; SAIOH – Southern African Institute for Occupational Hygiene; MVS – Mine Ventilation Society of South Africa; 2005.

Yokel RA, MacPhail RC. Engineered nanomaterials: exposures, hazards, and risk prevention. J Occup Med Toxicol. 2011;6:7.

Susi P, Schneider S. Database needs for a task-based exposure assessment model for construction. Appl Occup Environ Hyg. 1995;10(4):394-9.

Kromhout H. Design of measurement strategies for workplace exposures. Occup Environ Med. 2002;59(5):349-54.

Meijster T, Tielemans E, Schinkel J, Heederik D. Evaluation of peak exposures in the Dutch flour processing industry: implications for intervention strategies. Ann Occup Hyg. 2008;52(7):587-96.

Viegas S, Prista J. Cancro nasofaríngeo e exposição a formaldeído: avaliação da história profissional em 63 casos registados. Soc Port Med Trabalho. 2007;(6):13-22.

Conaway CC, Whysner J, Verna LK, Williams GM. Formaldehyde mechanistic data and risk assessment: endogenous protection from DNA adduct formation. Pharmacol Ther. 1996;71(1-2):29-55.

Ye X, Yan W, Xie H, Zhao M, Ying C. Cytogenetic analysis of nasal mucosa cells and lymphocytes from high-level long-term formaldehyde exposed workers and low-level short-term exposed waiters. Mutat Res. 2005;588(1):22-7.

He JL, Jin LF, Jin HY. Detection of cytogenetic effects in peripheral lymphocytes of students exposed to formaldehyde with cytokinesis-blocked micronucleus assay. Biomed Environ Sci. 1998;11(1):87-92.

Suruda A, Schulte P, Boeniger M, Hayes RB, Livingston GK, Steenland K, et al. Cytogenetic effects of formaldehyde exposure in students of mortuary science. Cancer Epidemiol Biomarkers Prev. 1993:2(5):453-60.

Speit G, Schmid O, Fröhler-Keller M, Lang I, Triebig G. Assessment of local genotoxic effects of formaldehyde in humans measured by de micronucleus test with exfoliated buccal mucosa cell. Mutat Res. 2007;627(2):129-35.

Speit G, Schmid O. Local genotoxic effects of formaldehyde in humans measured by the micronucleus test with exfoliated epithelial cells. Mutat Res. 2006;613(1):1-9.

Burgaz S, Erdem O, Çakmak G, Erdem N, Karakaya A, Karakaya AE. Cytogenetic analysis of buccal cells from shoe-workers and pathology and anatomy laboratory workers exposed to n-hexane, toluene, methyl ethyl ketone and formaldehyde. Biomarkers. 2002;7(2):151-61.

Published

2012-05-15

Issue

Section

Artigos

How to Cite

Occupational exposure to formaldehyde: exposure and genotoxic effects assessment. (2012). Saúde & Tecnologia, 07, 18-27. https://doi.org/10.25758/set.454