Córtex pré-frontal: o culminar da evolução humana

Authors

  • Lígia Palhete-Ferreira Departamento das Ciências do Diagnóstico, Terapêutica e Saúde Pública, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa. Portugal. Investigadora colaboradora do Centro de Investigação em Saúde e Tecnologia (H&TRC). Lisboa, Portugal.

DOI:

https://doi.org/10.25758/set.588

Keywords:

Córtex pré-frontal, Desenvolvimento cerebral, Adolescência, Adulto jovem

Abstract

O córtex pré-frontal (CPF) é responsável pela aquisição, execução e controlo de várias funções cerebrais, desde respostas motoras básicas a complexos processos de decisão. O desenvolvimento e maturação cerebral inicia-se durante o período gestacional e termina, presumivelmente, na fase final da adolescência e início da vida adulta. O CPF é a última região neocortical a atingir a fase final de maturação, o que explica a labilidade emocional e imaturidade, impulsividade, excitação e comportamento arriscado, típico da adolescência. Apesar dos inúmeros esforços para clarificar o processo de maturação do cérebro humano e as suas capacidades diferenciadoras, o desenvolvimento no adulto jovem não é totalmente compreendido. Com a presente revisão pretende-se descrever o papel dos lobos frontais, particularmente o CPF, no comportamento humano e suas capacidades distintivas, e o impacto do seu desenvolvimento na fase final da adolescência e início da vida adulta.

Downloads

Download data is not yet available.

References

Teffer K, Semendeferi K. Human prefrontal cortex: evolution, development, and pathology. Prog Brain Res. 2012;195:191-218.

Chayer C, Freedman M. Frontal lobe functions. Curr Neurol Neurosci Rep. 2001;1(6):547-52.

Rosch KS, Mostofsky S. Development of the frontal lobe. Handb Clin Neurol. 2019;163:351-67.

Ogilvie JM, Shum DH, Stewart A. Executive functions in late adolescence and early adulthood and their relationship with risk-taking behavior. Dev Neuropsychol. 2020;45(7-8):446-68.

Wahlstrom D, Collins P, White T, Luciana M. Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain Cogn. 2010;72(1):146-59.

Tarokh L, Saletin JM, Carskadon MA. Sleep in adolescence: physiology, cognition and mental health. Neurosci Biobehav Rev. 2016;70:182-8.

Taupin P. Neurogenesis in the adult central nervous system. C R Biol. 2006;329(7):465-75.

Stiles J, Jernigan TL. The basics of brain development. Neuropsychol Rev. 2010;20(4):327-48.

Gelman SA, Taylor M. A review of: 'The fundamentals of brain development: integrating nature and nurture. By Joan Stiles.' J Cogn Dev. 2010;11(3):393-6.

Stiles J. The fundamentals of brain development: integrating nature and nurture. Cambridge: Harvard University Press; 2008.

Thomason ME. Development of brain networks in utero: relevance for common neural disorders. Biol Psychiatry. 2020;88(1):40-50.

Cohen-Sacher B, Lerman-Sagie T, Lev D, Malinger G. Sonographic developmental milestones of the fetal cerebral cortex: a longitudinal study. Ultrasound Obstet Gynecol. 2006;27(5):494-502.

Javed K, Reddy V, Lui F. Neuroanatomy, cerebral cortex [Internet]. Treasure Island: StatsPearls Publishing; 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK430685/

Johnson MH. Functional brain development in humans. Nat Rev Neurosci. 2001;2(7):475-83.

Arain M, Haque M, Johal L, Mathur P, Nel W, Rais A, et al. Maturation of the adolescent brain. Neuropsychiatr Dis Treat. 2013;9:449-61.

Crone EA, Ridderinkhof KR. The developing brain: from theory to neuroimaging and back. Dev Cogn Neurosci. 2011;1(2):101-9.

Walhovd KB, Westlye LT, Amlien I, Espeseth T, Reinvang I, Raz N, et al. Consistent neuroanatomical age-related volume differences across multiple samples. Neurobiol Aging. 2011;32(5):916-32.

Jernigan TL, Gamst AC. Changes in volume with age: consistency and interpretation of observed effects. Neurobiol Aging. 2005;26(9):1271-8.

Catani M. Chapter 6: the anatomy of the human frontal lobe. Handb Clin Neurol. 2019;163:95-122.

Risberg J, Grafman J. The frontal lobes: development, function, and pathology. New York: Cambridge University Press; 2006. ISBN 9780521672252

Beaver JD, Lawrence AD, van Ditzhuijzen J, Davis MH, Woods A, Calder AJ. Individual differences in reward drive predict neural responses to images of food. J Neurosci. 2006;26(19):5160-6.

Barrós-Loscertales A, Meseguer V, Sanjuán A, Belloch V, Parcet MA, Torrubia R, et al. Striatum gray matter reduction in males with an overactive behavioral activation system. Eur J Neurosci. 2006;24(7):2071-4.

Ernst M. The triadic model perspective for the study of adolescent motivated behavior. Brain Cogn. 2014;89:104-11.

Hahn T, Dresler T, Ehlis AC, Plichta MM, Heinzel S, Polak T, et al. Neural response to reward anticipation is modulated by Gray’s impulsivity. Neuroimage. 2009;46(4):1148-53.

Hahn T, Dresler T, Plichta MM, Ehlis AC, Ernst LH, Markulin F, et al. Functional amygdala-hippocampus connectivity during anticipation of aversive events is associated with Gray’s Trait 'sensitivity to punishment'. Biol Psychiatry. 2010;68(5):459-64.

Fuster JM. Frontal lobe and cognitive development. J Neurocytol. 2002;31(3-5):373-85.

Grafman J. Human prefrontal cortex: processes and representations. In: Risberg J, Grafman J, editors. Frontal lobes: development, function and pathology. New York: Cambridge University Press; 2006. p. 69-91.

Draper IT. The working brain: an introduction to neuropsychology. J Neurol Neurosurg Psychiatry. 1974;37(3):361-2.

Downloads

Published

2022-06-01

Issue

Section

Artigos de Revisão

How to Cite

Córtex pré-frontal: o culminar da evolução humana. (2022). Saúde & Tecnologia, 26, 05-09. https://doi.org/10.25758/set.588