Environmental monitoring and biomarkers of exposure to styrene in chemical industry

Authors

  • Daniela Fernandes Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Márcia Meneses Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal. Resiquímica – Resinas Químicas, S.A. Mem-Martins, Portugal. Grupo de Investigação em Ambiente e Saúde, GIAS. Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Paula Albuquerque Departamento das Ciências e Tecnologias Laboratoriais e Saúde Comunitária, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Miguel Barros Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal. Resiquímica – Resinas Químicas, S.A. Mem-Martins, Portugal.

DOI:

https://doi.org/10.25758/set.2061

Keywords:

Occupational exposure, Styrene, Chemical industry, Styrene, Environmental and biological monitoring, Styrene, Exposure biomarkers, Styrene

Abstract

Biomarkers of exposure to chemicals, such as styrene, allow estimating the exposure to a particular compound by measuring the compound or it(s) metabolite(s) in body fluids. An example is the determination of mandelic acid and phenylglyoxylic acid in urine. Indicators of genotoxicity are categorized as: (a) DNA and protein adducts; (b) DNA strand breaks. Styrene metabolism is initiated by Cytochrome P450 enzymes mediated by the oxidation of styrene to a reactive metabolite, the styrene-7,8-oxide. This study aims to review the environmental monitoring, complemented with biomarkers of exposure in order to understand its correlation and styrene genotoxicity. Systematic searches were performed to identify studies of occupational exposure to styrene and its health effects on workers in chemical industries. To determine styrene air concentration, several studies used a personal air sampling method. A significant correlation has been found between styrene air concentration and mandelic and phenylglyoxylic acid concentration in urine. A significant relationship was found between individual levels of mandelic acid and phenylglyoxylic acid and styrene-7,8-oxide adducts to N-terminal valine in hemoglobin among exposed individuals. A strong correlation was also found between the frequency of DNA single-strand breaks, in mononuclear leukocytes, and styrene airborne levels. The relationship between DNA damage, persistence, and repair is complex, which complicates the relevance evaluation of potential genotoxic exposures difficult. There is conflicting evidence on the relationship between genotoxic response and exposure level. In future individual susceptibility studies, the individual genotypes associated with the metabolic route and DNA damage of styrene (metabolizing enzymes and DNA repair enzymes) should be analyzed. From the analysis of several studies, it was found that indeed there is a strong correlation between the exposure levels and exposure biomarkers; however, no evidence was found regarding styrene genotoxicity.

Downloads

Download data is not yet available.

References

Tossavainen A. Styrene use and occupational exposure in the plastics industry. Scand J Work Environ Health. 1978;4(2):7-13.

Gong Y, Kishi R, Katakura Y, Tsukishima E, Fujiwara K, Kasai S, et al. Relation between colour vision loss and occupational styrene exposure level. Occup Environ Med. 2002;59(12):824-9.

World Health Organization. International programme of chemical safety: environmental health criteria 26 – styrene. Geneva: WHO; 1983.

Agency for Toxic Substances and Disease Registry. Styrene: toxfaqs [homepage]. Atlanta: ATSDR; 2012 [cited 2015 Nov 2]. Available from: http://www.atsdr.cdc.gov/toxfaqs/tfacts53.pdf

Carlo RV, Feng HA, Morata TC, Kardous CA. In-depth study: an occupational exposure assessment of styrene and noise in the fiber-reinforced plastic boat manufacturing industry at Island Packet Yachts (IPY) Largo, Florida [Internet]. Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health; 2007. Available from: https://www.cdc.gov/niosh/surveyreports/pdfs/ECTB-306-16a.pdf

Flodin U, Ekberg K, Andersson L. Neuropsychiatric effects of low exposure to styrene. Br J Ind Med. 1989;46(11):805-8.

Matikainen E, Forsman-Grönholm L, Pfäffli P, Juntunen J. Neurotoxicity in workers exposed to styrene. IARC Sci Publ. 1993;(127):153-61.

Campagna D, Mergler D, Huel G, Bélanger S, Truchon G, Ostiguy C, et al. Visual dysfunction among styrene exposed workers. Scand J Work Environ Health. 1995;21(5):382-90.

International Agency for Research on Cancer. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene: IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. Lyon: IARC; 2002. ISBN 9283212827

Seeber A, Van Thriel C, Haumann K, Kiesswetter E, Blaszkewicz M, Golka K. Psychological reactions related to chemosensory irritation. Int Arch Occup Environ Health. 2002;75(5):314-25.

Instituto Português da Qualidade. Norma Portuguesa 1796:2014 – Valores-limite de exposição e índices biológicos de exposição profissional a agentes químicos. Caparica: IPQ; 2014.

Rueff J, Teixeira JP, Santos LS, Gaspar JF. Genetic effects and biotoxicity monitoring of occupational styrene exposure. Clin Chim Acta. 2009;399(1-2):8-23.

Guillemin M, Berode M. Biological monitoring of styrene: a review. Am Ind Hyg Assoc J. 1988;49(10):497-505.

Lauwerys RR, Hoet P. Industrial chemical exposure: guidelines for biological monitoring. 2nd ed. Boca Raton, FL: CRC Press; 1993. ISBN 0873716507 2:143–159.

Pekari K, Nylander-French L, Pfäffl, P, Sorsa M, Aitio A. Biological monitoring of exposure to styrene: assessment of different approaches. J Occup Med Toxicol. 1993;2:115-26.

American Conference of Governmental Industrial Hygienists. TLVs® and BEIs®: threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, OH: ACGIH; 2001.

Nakajima T, Wang RS, Elovaara E, Gonzalez FJ, Gelboin HV, Vainio H, et al. CYP2C11 and CYP2B1 are major cytochrome P450 forms involved in styrene oxidation in liver and lung microsomes from untreated rats, respectively. Biochem Pharmacol. 1994;48(4):637-42.

Barale R. The genetic toxicology of styrene and styrene oxide. Mutat Res. 1991;257(2):107-26.

International Agency for Research on Cancer. Some industrial chemicals: IARC monographs on the evaluation of carcinogenic risks to humans. Lyon: IARC; 1994. ISBN 9789283201816

Scott D, Preston RJ. A re-evaluation of the cytogenetic effects of styrene. Mutat Res. 1994;318(3):175-203.

Norppa H, Sorsa M. Genetic toxicity of 1,3-butadiene and styrene. In: International Agency for Research on Cancer, editor. Butadiene and styrene: assessment of health hazards. Lyon: IARC; 1993. p. 185-93. ISBN 9789283221272

Astrand I, Kilbom A, Ŏvrum P, Wahlberg I, Vesterberg O. Exposure to styrene: I concentration in alveolar air and blood at rest and during exercise and metabolism. Work Environ Health. 1974;11(2): 69-85.

Engström K, Hărkönen H, Kalliokoski P, Rantanen J. Urinary mandelic and concentration after occupational exposure to styrene and its use as a biological exposure test. Scand J Work Environ Health. 1976;2(1):21-6.

Götell P, Axelson O, Lindelöf B. Field studies on human styrene exposure. Work Environ Health. 1972;9(2):76-83.

Schaller KH, Gossler K, Bost HP, Valentin H. Gas chromatographic methods for the determination of styrene in blood and of mandelic acid and phenylgloxilsäure in urine. Arbeitsmed Sozialmed Präventivmed. 1976;11:24-6,63-4.

NIOSH. NIOSH manual of analytical methods. 4th ed. Cincinnati, OH: NIOSH; 1994.

Teixeira JP, Gaspar J, Roma-Torres J, Silva S, Costa C, Roach J, et al. Styrene-oxide N-terminal valine haemoglobin adducts in reinforced plastic workers: possible influence of genetic polymorphism of drug-metabolising enzymes. Toxicology. 2007;237(1-3):58-64.

Teixeira JP, Gaspar J, Coelho P, Costa C, Pinho-Silva S, Costa S, et al. Cytogenetic and DNA damage on workers exposed to styrene. Mutagenesis. 2010;25(6):617-21.

Bardodĕj Z, Bardodĕjová E. Biotransformation of ethyl benzene, styrene and alfa-methylstyrene. Am Ind Hyg Assoc J. 1970;31(2):206-10.

Blake AJ, Rose BA. The rapid determination of toluene and styrene vapours in the atmosphere. Analyst. 1960;85:442-5.

Rowe VK, Atchinson GJ, Luce EN, Adam EM. The determination of monomeric styrene. J Ind Hyg Toxicol. 1943;25:348-53.

Yamamoto RK, Cook WA. Determination of ethyl benzene and styrene in air by ultraviolet spectrophometry. Am Ind Hyg Assoc J. 1968;29(3):238-41.

Sedivec V, Flek J. Determination of styrene in the air. Prac. Lék. 1960;12(8):418-22.

Wenker MA, Kezić S, Monster AC, De Wolff FA. Metabolism of styrene in the human liver in vitro: interindividual variation and enantioselectivity. Xenobiotica. 2001;31(2):61-72.

Nakajima T, Elovaara E, Gonzalez FJ, Gelboin HV, Vainio H, Aoyama T. Characterization of the human cytochrome P450 isozymes responsible for styrene metabolism. IARC Sci Publ. 1993;(127):101-8.

Kim H, Wang RS, Elovaara E, Raunio H, Pelkonen O, Aoyama T, et al. Cytochrome P450 isozymes responsible for the metabolism of toluene and styrene in human liver microsomes. Xenobiotica. 1997;27(7):657-65.

Wigaeus E, Löf A, Bjurström R, Nordqvist MB. Exposure to styrene: uptake, distribution, metabolism and elimination in man. Scand J Work Environ Health. 1983;9(6):479-88.

Perbellini L, Mozzo P, Turri PV, Zedde A, Brugnone F. Biological exposure index of styrene suggested by a physiologico-mathematical model. Int Arch Occup Environ Health. 1988;60(3):187-93.

Csanady GA, Mendrala AL, Nolan RJ, Filser JG. A physiologic pharmacokinetic model for styrene and styrene-7,8-oxide in mouse, rat, and man. Arch Toxicol. 1994;68(3):143-57.

Wongvijitsuk S, Navasumrit P, Vattanasit U, Parnlob V, Ruchirawat M. Low level occupational exposure to styrene: its effects on DNA damage and DNA repair. Int J Hyg Environ Health. 2011;214(2):127-37.

Eitaki Y, Kawai T, Kishi R, Sakurai H, Ikeda M. Stability in urine of authentic phenylglyoxylic and mandelic acids as urinary markers of occupational exposure to styrene. J Occup Health. 2008;50(3):221-8.

Vodicka P, Tvrdik T, Osterman-Golkar S, Vodicková L, Peterková K, Soucek P, et al. An evaluation of styrene genotoxicity using several biomarkers in a 3-year follow-up study of hand-lamination workers. Mutat Res. 1999;445(2):205-24.

Gobba F, Galassi C, Imbriani M, Ghittori S, Candela S, Cavalleri A. Acquired dyschromatopsia among styrene exposed workers. J Occup Med. 1991;33(7):761-5.

Fallas C, Fallas J, Maslard P, Dally S. Subclinical impairment of colour vision among workers exposed to styrene. Br J Ind Med. 1992;49(10):679-82.

Chia SE, Jeyaratnam J, Ong CN, Ng TP, Lee HS. Impairment of color vision among workers exposed to low concentrations of styrene. Am J Ind Med. 1994;26(4):481-8.

Eguchi T, Kishi R, Harabuchi I, Yuasa J, Arata Y, Katakura Y, et al. Impaired colour discrimination among workers exposed to styrene: relevance of a urinary metabolite. Occup Environ Med. 1995;52(8):534–8.

Mergler D, Huel G, Bélanger S, Bowler RM, Truchon G, Drolet D, et al. Surveillance of early neurotoxic dysfunction. Neurotoxicology. 1996;17(3-4):803-12.

Gobba F. Color vision: a sensitive indicator of exposure to neurotoxins. Neurotoxicology. 2000;21(5):857-62.

Perera FP. Environment and cancer: who are susceptible? Science. 1997;278(5340):1068-73.

Christakopoulos A, Bergmark E, Zorcec V, Norppa H, Mäki-Paakkanen J, Osterman-Golkar S. Monitoring of occupational exposure to styrene from hemoglobin adducts and metabolites in blood. Scand J Work Environ Health. 1993;19(4):255-63.

Severi M, Pauwels W, Van Hummelen P, Roosels D, Kirsch-Volders M, Veulemans H. Urinary mandelic acid and hemoglobin adducts in fiberglass-reinforced plastics workers exposed to styrene. Scand J Work Environ Health. 1994;20(6):451-8.

Bastlová T, Vodicka P, Peterková K, Hemminki K, Lambert B. Styrene oxide induced HPRT mutations, DNA adducts and DNA strand breaks in cultured human lymphocytes. Carcinogenesis. 1995;16(10):2357-62.

Teixeira JP, Gaspar J, Silva S, Torres J, Silva SN, Azevedo MC, et al. Occupational exposure to styrene: modulation of cytogenetic damage and levels of urinary metabolites of styrene by polymorphisms in genes CYP2E1, EPHX1, GSTM1, GSTT1 and GSTP1. Toxicology. 2004;195(2-3):231-42.

Somorovská M, Jahnová E, Tulinská J, Zámecníková M, Sarmanová J, Terenová A, et al. Biomonitoring of occupational exposure to styrene in a plastics lamination plant. Mutat Res. 1999;428(1-2):255-69.

Walles S, Edling C, Anundi H, Johanson G. Exposure dependent increase in DNA single strand breaks in leucocytes from workers exposed to low concentrations of styrene. Br J Ind Med. 1993;50(6):570-4.

Vodicka P, Bastlová T, Vodicková L, Peterková K, Lambert B, Hemminki K. Biomarkers of styrene exposure in lamination workers: levels of O6-guanine DNA adducts, DNA strand breaks and mutant frequencies in the hypoxanthine guanine phosphoribosyltransferase gene in T-lymphocytes. Carcinogenesis. 1995;16(7):1473-81.

Mäki-Paakkanen J, Walles S, Osterman-Golkar S, Norppa H. Single-strand breaks, chromosome aberrations, sister-chromatid exchanges, and micronuclei in blood lymphocytes of workers exposed to styrene during the production of reinforced plastics. Environ Mol Mutagen. 1991;17(1):27-31.

Brenner DD, Jeffrey AM, Latriano L, Wazneh L, Warburton D, Toor M, et al. Biomarkers in styrene-exposed boatbuilders. Mutat Res. 1991;261(3):225-36.

Vodicka P, Stetina R, Kumar R, Plna K, Hemminki K. 7-Alkylguanine adducts of styrene oxide determined by 32P-postlabeling in DNA and human embryonal lung fibroblasts (HEL). Carcinogenesis. 1996;17(4):801-8.

Henderson LM, Speit G. Review of the genotoxicity of styrene in humans. Mutat Res. 2005;589(3):158-91.

Bardodej Z, Bardodejova E. Biotransformation of ethyl benzene, styrene, and alpha-methylstyrene in man. Am Ind Hyg Assoc J. 1970;31(2):206-9.

Droz PO, Guillemin MP. Human styrene exposure. V. Development of a model for biological monitoring. Int Arch Occup Environ Health. 1983;53(1):19-36.

Migliore L, Naccarati A, Coppedè F, Bergamaschi E, De Palma G, Voho A, et al. Cytogenetic biomarkers, urinary metabolites and metabolic gene polymorphisms in workers exposed to styrene. Pharmacogenet Genomics. 2006;16(2):87-99.

Kivistö H, Pekari K, Aitio A. Analysis and stability of phenylglyoxylic and mandelic acids in the urine of styrene-exposed people International. Int Arch Occup Environ Health. 1993;64(6):399-403.

Haufroid V, Jakubowski M, Janasik B, Ligocka D, Buchet JP, Bergamaschi E, et al. Interest in genotyping and phenotyping of drug-metabolizing enzymes for the interpretation of biological monitoring of exposure to styrene. Pharmacogenetics. 2002;12(9):691-702.

Fustinoni S, Colosio C, Colombi A, Lastrucci L, Yeowell-O’Connell K, Rappaport SM. Albumin and haemoglobin adducts as biomarkers of exposure to styrene in fiberglass- reinforced-plastics workers. Int Arch Occup Environ Health. 1998;71(1):35-41.

Sarangapani R, Teeguarden JG, Cruzan G, Clewell HJ, Andersen ME. Physiologically based pharmacokinetic modeling of styrene and styrene oxide respiratory tract dosimetry in rodents and humans. Inhal Toxicol. 2002;14(8):789-834.

Downloads

Published

2022-08-04

Issue

Section

Artigos

How to Cite

Environmental monitoring and biomarkers of exposure to styrene in chemical industry. (2022). Saúde & Tecnologia, 18, 23-29. https://doi.org/10.25758/set.2061