Exposure of nuclear medicine technologists during pulmonary ventilation scan

Authors

  • M. Alves Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Ana Cristina Duarte Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • A. Mylkivska Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • E. Pereira Departamento de Medicina Nuclear, Hospital Particular de Almada. Almada, Portugal.
  • V. Jerónimo Departamento de Medicina Nuclear, Hospital Beatriz Ângelo. Loures, Portugal.
  • Elisabete Carolino Unidade de Ensino e Investigação em Matemática e Física, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal. Centro de Investigação em Saúde e Tecnologia (H&TRC), ESTeSL – Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Lina Vieira Centro de Investigação em Saúde e Tecnologia (H&TRC), ESTeSL – Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa. Lisboa, Portugal. Unidade de Ensino e Investigação em Fisiologia, Imagem Médica e Terapia, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal. Grupo de Investigação em Modelação e Optimização de Sistemas Multifuncionais (GI-MOSM, ADEM, ISEL), ISEL – Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.

DOI:

https://doi.org/10.25758/set.2141

Keywords:

Dose rate, Lung ventilation scintigraphy, Nuclear medicine technologist exposure, Radiation safety and protection, 99mTc-Technegas

Abstract

Introduction – The ventilation technique requires a patient to inhale a radiopharmaceutical. During the procedure, the technologist risks being contaminated with radioactive gas. The aim of the study – To evaluate the exposure to radiation of the nuclear medicine technologists during lung ventilation studies with 99mTc-Technegas® through the monitoring of external contaminations of the hands and face. Methods – Measurement of four nuclear medicine technologists from two different nuclear medicine departments, using a Geiger-Müller counter. We measured the dose rate of the ventilation room background before and after the procedure, with and without the presence of the patient; we measured the dose rate on the hands (with and without the gloves used during the procedure) and on the face (with and without disposable facemask used during the procedure). The data was analyzed using SPSS statistic software, v. 22.0 for Windows. Results – We verified both departments showed higher dose rate values after the ventilation procedure while the patient stills in the room. Department Y showed higher dose rate values with a significate value of 5% on the hands with gloves on, on the gloves used during the procedure, on the face with the disposable mask on, and on the mask. Conclusions – The background dose rate rises with the increase in the number of ventilation studies performed. Gloves are an external barrier against direct contamination of the hands. Face masks reduce the contamination risk on the face.

Downloads

Download data is not yet available.

References

Oliveira R, Santos D, Ferreira D, Coelho P, Veiga F. Preparações radiofarmacêuticas e suas aplicações [Radiopharmaceuticals and applications]. Rev Bras Ciênc Farm. 2006;42(2):151-65. Portuguese

Bajc M, Neilly JB, Miniati M, Schuemichen C, Meignan M, Jonson B. EANM guidelines for ventilation/perfusion scintigraphy: Part 1. Pulmonary imaging with ventilation/perfusion single photon emission tomography. Eur J Nucl Med Mol Imaging. 2009;36(8):1356-70.

López Medina A, Miñano JA, Terrón JA, Bullejos JA, Guerrero R, Arroyo T, et al. Calculation of airborne radioactivity in a Technegas lung ventilation unit. Nucl Med Commun. 1999;20(12):1141-5.

Senden TJ, Moock KH, Gerald JF, Burch WM, Browitt RJ, Ling CD, et al. The physical and chemical nature of technegas. J Nucl Med. 1997;38(8):1327-33.

Cyclomedica. Recommended Technegas delivery protocol [website]. Kingsgrove: Cyclomedica; 2013. Available from: http://www.cyclomedica.com/

Lloyd JJ, Anderson P, James JM, Shields RA, Prescott MC. Contamination levels and doses to staff arising from the use of Technegas. Nucl Med Commun. 1994;15(6):435-40.

Smart R. Task-specific monitoring of nuclear medicine technologists' radiation exposure. Radiat Prot Dosimetry. 2004;109(3):201-9.

Conselho da União Europeia. Diretiva 2013/59/EURATOM do Conselho, de 5 de dezembro de 2013. J Of Eur Union. 2014;L(13):1-73.

Costa PF. International basic safety standards. In: Rep S, Santos A, Testanera G, editors. Radiation protection and dose optimization: a technologist’s guide. Vienna: European Association of Nuclear Medicine; 2016. p. 36-45. ISBN 9783902785121

Rep S. Occupational radiation protection. In: Rep S, Santos A, Testanera G, editors. Radiation protection and dose optimization: a technologist’s guide. Vienna: European Association of Nuclear Medicine; 2016. p. 99-106. ISBN 9783902785121

Vanbilloen HP, Bauwens J, Mortelmans L, Verbruggen AM. Reduction of contamination risks during clinical studies with Technegas. Eur J Nucl Med. 1999;26(10):1349-52.

Kawase S, Ohno K, Nakamoto Y, Miyatake H. Safety management of nuclear medicine personnel with visualisation of air dose rate. Radiat Prot Dosimetry. 2015;165(1-4):439-42.

Huff RD, Horwitz P, Klash SJ. Personnel protection during aerosol ventilation studies using radioactive technetium (Tc99m). Am Ind Hyg Assoc J. 1994;55(12):1144-8.

Pityn PJ, King ME, VanderWerf R. Apparent versus real exposures of nuclear medicine technologists during aerosol lung ventilation scanning. Am Ind Hyg Assoc J. 1996;57(2):202-4.

Published

2022-08-01

Issue

Section

Artigos

How to Cite

Exposure of nuclear medicine technologists during pulmonary ventilation scan. (2022). Saúde & Tecnologia, 20, 29-36. https://doi.org/10.25758/set.2141