Possíveis implicações da contaminação fúngica num aviário

Autores

  • Carla Viegas Área Científica de Saúde Ambiental, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • Susana Viegas Área Científica de Saúde Ambiental, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa. Lisboa, Portugal.
  • C. Veríssimo Laboratório de Micologia, Instituto Nacional de Saúde Dr. Ricardo Jorge. Lisboa, Portugal.
  • Laura Rosado Laboratório de Micologia, Instituto Nacional de Saúde Dr. Ricardo Jorge. Lisboa, Portugal.
  • Carlos Silva Santos Grupo de Disciplinas Saúde Ambiental e Ocupacional, Escola Nacional de Saúde Pública, Universidade Nova de Lisboa. Lisboa, Portugal.

DOI:

https://doi.org/10.25758/set.394

Palavras-chave:

Aviário, Contaminação fúngica, Micotoxinas, Saúde pública, Saúde ocupacional

Resumo

Introdução – Apesar de em Portugal se verificar o aumento da indústria da produção de aves para consumo humano, apenas alguns estudos incidem sobre a qualidade do ar interior e as implicações da sua degradação. Objectivos – Descrever a contaminação fúngica num aviário, analisar possíveis associações com a temperatura ambiente e a humidade relativa e o possível impacto na saúde dos consumidores e trabalhadores desta unidade. Métodos – Foi desenvolvido um estudo descritivo para avaliar a contaminação fúngica num aviário. Colheram-se 5 amostras de ar de 100 litros através do método de compactação e 4 amostras de superfícies, utilizando a técnica da zaragatoa e um quadrado de 10cm de lado de metal. Simultaneamente, os parâmetros ambientais – temperatura ambiente e humidade relativa – também foram medidos. Resultados – Foram identificadas vinte espécies de fungos no ar, sendo os seguintes os quatro géneros mais comummente isolados: Cladosporium (40,5%), Alternaria (10,8%), Chrysosporium e Aspergillus (6,8%). Nas superfícies, 21 espécies de fungos foram identificadas, sendo os 4 géneros mais identificados Penicillium (51,8%), Cladosporium (25,4%), Alternaria (6,1%) e Aspergillus (4,2%). Importa referir o facto de Aspergillus flavus, também isolado no ar, ser reconhecido como produtor de micotoxinas (aflatoxina) e Aspergillus fumigatus, uma das espécies isoladas no ar e superfícies, ser capaz de causar aspergilose grave ou fatal. Não se verificou relação significativa (p> 0,05) entre a contaminação fúngica e as variáveis ambientais. Conclusão – Caracterizou-se a distribuição fúngica no ar e superfícies do aviário e analisou-se a possível influência das variáveis ambientais. Foi reconhecido um potencial problema de Saúde Pública devido à contaminação fúngica e à possível produção de micotoxinas com a eventual contaminação dos produtos alimentares. A contaminação fúngica, particularmente causada pelo Aspergillus fumigatus, e a possível presença de micotoxinas no ar, devem ser encaradas também como fatores de risco neste contexto ocupacional.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Goyer N, Lavoie J, Lazure L, Marchand G. Bioaerosols in the workplace: evaluation, control and prevention guide. Québec: Institut de Recherche en Santé et en Sécurité du Travail du Québec; 2001.

Daisey JM, Angell WJ, Apte MG. Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air. 2003;13(1):53-64.

Speijers GJ, Speijers MH. Combined toxic effects of mycotoxins. Toxicol Lett. 2004;153(1):91-8.

Brera C, Caputi R, Miraglia M, Iavicoli I, Salerno A, Carelli G. Exposure assessment to mycotoxins in workplaces: aflatoxins and ochratoxin A occurrence in airborne dusts and human sera. Microchem J. 2002; 73(1):167-73.

Jarvis BB. Stachybotrys chartarum: a fungus of our time. Phytochemistry. 2003;64:53-60.

Molocznik A. Qualitative and quantitative analysis of agricultural dust in working environment. Ann Agric Environ Med. 2002;9(1):71-8.

Lues JF, Theron MM, Venter P, Rasephei MH. Microbial composition in bioaerosols of a high-throughput chicken-slaughtering facility. Poult Sci. 2007;86(1):142-9.

Buys EM, Nortjé GL, Jooste PJ, Von Holy A. Bacterial populations associated with bulk packaged beef supplemented with dietary vitamin E. Int J Food Microbiol. 2000;56(2-3):239-44.

Borch E, Arinder P. Bacteriological safety issues in red meat and ready-to-eat meat products, as well as control measures. Meat Sci. 2002;62(3):381-90.

Whyte P, Collins JD, McGill K, Monahan C, O’Mahony H. Distribution and prevalence of airborne microorganisms in three commercial poultry processing plants. J Food Prot. 2001;64(3):388-91.

Shlosberg A, Zadikov I, Perl S, Yakobson B, Varod Y, Elad D, et al. Aspergillus clavatus as the probable cause of a lethal mass neurotoxicosis in sheep. Mycopathologia. 1991;114(1):35-9.

Olsen JH, Dragsted L, Autrup H. Cancer risk and occupational exposure to aflatoxins in Denmark. Br J Cancer. 1988;58(3):392-6.

Autrup JL, Schmidt J, Seremet T, Autrup H. Determination of exposure to aflatoxins among Danish workers in animal-feed production through the analysis of aflatoxin B1 adducts to serum albumin. Scand J Work Environ Health. 1991;17(6):436-40.

Brera C, Caputi R, Miraglia M, Lavicoli L, Salerno A, Carelli G. Exposure assessment to mycotoxins in workplace: aflatoxins and ochratoxin A occurrence in airborne dusts and human sera. Microchem J. 2002;73(1-2):167-73.

Nevalainen A. Bio-aerosols as exposure agents in indoor environment in relation to asthma and allergy. Section 3 Asthma and allergy. In Proceedings of the First ENVIE Conference on Indoor Air Quality and Health for EU Policy, Helsinki, Finland, 2007.

International Standard ISO 18593:2004 – Microbiology of food and animal feeding stuffs: horizontal methods for sampling techniques from surfaces using contact plates and swabs. Geneva: ISO; 2004.

International Standard ISO 7726:1998 – Ergonomics of the thermal environment: instruments for measuring physical quantities. Geneva: ISO; 1998.

Kaur R, Kashyap B, Bhalla P. Onychomycosis: epidemiology, diagnosis and management. Indian J Med Microbiol. 2008;26(2):108-16.

Ghannoum MA, Hajjeh RA, Scher R, Konnikov N, Gupta AK, Summerbell R, et al. A large-scale North American study of fungal isolates from nails: the frequency of onychomycosis, fungal distribution and antifungal susceptibility patterns. J Am Acad Dermatol. 2000;43(4):641-8.

Gianni C, Cerri A, Crosti C. Non-dermatophytic onychomycosis: an understimated entity? A study of 51 cases. Mycoses. 2000;43(1-2):29-33.

De Hoog GS, Cuarro GJ, Figueras MJ. Atlas of clinical fungi. 2nd ed. ASM Press; 2001.

Cooley JD, Wong WC, Jumper CA, Straus DC. Correlation between the prevalence of certain fungi and sick building syndrome. Occup Environ Med. 1998;55(9):579-84.

Garrett MH, Rayment PR, Hooper MA, Abramson MJ, Hooper BM. Indoor airborne fungal spores, house dampness and associations with environmental factors and respiratory health in children. Clin Exp Allergy. 1998;28(4):459-67.

Kemp PC, Neumeister-Kemp HG, Esposito B, Lysek G, Murray F. Changes in airborne fungi from the outdoors to indoor air; large HVAC systems in nonproblem buildings in two different climates. AIHA J. 2003;64(2):269-75.

American Industrial Hygiene Association. Field guide for the determination of biological contaminants in environmental samples. AIHA; 1996.

Yao M, Mainelis G. Analysis of portable impactor performance for enumeration of viable bioaerosols. J Occup Environ Hyg. 2007;4(7):514-24.

Douwes J, Thorne P, Pearce N, Heederik D. Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg. 2003;47(3):187-200.

Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology. 2007;153(Pt 6):1677-92.

Miller JD. Fungi as contaminants of indoor air. Atmos Environ. 1992;26 A(12):2163-72.

Morey P. Bioaerosols in the indoor environment: current practices and approaches. In Weeks D, Gammage R, editors. The practitioner’s approach to indoor air quality investigations. Akron, OH: American Industrial Hygiene Association; 1990. p. 51-72.

Lonc E, Plewa K. Comparison of indoor and outdoor bioaerosols in poultry farming. In Moldoveanu AM, editor. Advanced topics in environmental health and air pollution case studies. InTech; 2011. p. 339-52.

Rimac D, Macan J, Varnai VM, Vucemilo M, Matkovic K, Prester L, et al. Exposure to poultry dust and health effects in poultry workers: impact of mould and mite allergens. Int Arch Occup Environ Health. 2010;83(1):9-19.

Stetzenbach LD, Buttner MP, Cruz P. Detection and enumeration of airborne biocontaminants. Curr Opin Biotechnol. 2004;15(3):170-4.

Klánová K, Hollerová J. Hospital indoor environment: screening for micro-organisms and particulate matter. Indoor Built Environ. 2003;12(1):61-7.

Buttner MP, Stetzenbach LD. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling. Appl Environ Microbiol. 1993;59(1):219-26.

Scheff PA, Paulius VK, Curtis L, Conroy LM. Indoor air quality in a middle school, Part II: development of emission factors for particulate matter and bioaerosols. Appl Occup Environ Hyg. 2000;15(11):835-42.

Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Aggarwal D. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr. 2004;80(5):1106-22.

Bosch FX, Muñoz N. Prospects for epidemiological studies on hepatocellular cancer as a model for assessing viral and chemical interactions. IARC Sci Publ. 1988;(89):427-38.

Ellis WO, Smith JP, Simpson BK, Oldham JH. Aflatoxins in food: occurrence, biosynthesis, effects on organisms, detection, and methods of control. Crit Rev Food Sci Nutr. 1991;30(4):403-39.

Liao C, Chen S. A probabilistic modelling approach to assess human inhalation exposure risks to airborne aflatoxin B1 (AFB1). Atmos Environ. 2005;39:6481-90.

Groopman JD, Zhu JQ, Donahue PR, Pikul A, Zhang LS, Chen JS, et al. Molecular dosimetry of urinary aflatoxin-DNA adducts in people living in Guangxi Autonomous Region, People´s Republic of China. Cancer Res. 1992;52(1):45-52.

Nayak S, Sashidhar RB, Bhat RV. Quantification and validation of enzyme immunoassay for urinary aflatoxin B1-N7-guanine adduct for biological monitoring of aflatoxins. Analyst. 2001;126(2):179-83.

Groopman JD, Johnson D, Kensler TW. Aflatoxin and hepatitis B virus biomarkers: A paradigm for complex environmental exposures and cancer risk. Cancer Biomark. 2005;1(1):5-14.

Kakde UB, Kakde HU, Saoji AA. Seasonal variation of fungal propagules in a fruit market environment, Nagpur (India). Aerobiologia. 2001;17(2):177-82.

Fernandes F. Poeiras em aviários. Rev Bras Med Trabalho, Belo Horizonte. 2004;2(4):253-62. Portuguese

Downloads

Publicado

15-11-2011

Edição

Secção

Artigos

Como Citar

Possíveis implicações da contaminação fúngica num aviário. (2011). Saúde & Tecnologia, 06, 17-23. https://doi.org/10.25758/set.394